首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1635篇
  免费   145篇
生物科学   1780篇
  2023年   21篇
  2022年   21篇
  2021年   59篇
  2020年   44篇
  2019年   55篇
  2018年   64篇
  2017年   59篇
  2016年   74篇
  2015年   95篇
  2014年   99篇
  2013年   150篇
  2012年   115篇
  2011年   111篇
  2010年   99篇
  2009年   78篇
  2008年   82篇
  2007年   89篇
  2006年   70篇
  2005年   66篇
  2004年   65篇
  2003年   46篇
  2002年   32篇
  2001年   21篇
  2000年   16篇
  1999年   23篇
  1998年   7篇
  1997年   9篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   12篇
  1991年   4篇
  1990年   3篇
  1989年   15篇
  1988年   10篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1984年   2篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   5篇
  1972年   4篇
  1970年   2篇
  1969年   1篇
排序方式: 共有1780条查询结果,搜索用时 31 毫秒
31.
The true diversity and interspecific limits in the Neotropical endemic avian genus Dendrocolaptes (Furnariidae) remain a highly controversial subject, with previous genus‐wide assessments, based mostly on morphological characters, producing poorly resolved phylogenies. The lack of well‐resolved, robust, and taxonomically densely sampled phylogenies for Dendrocolaptes prevents reliable inferences on the genus’ actual species diversity and evolutionary history. Here, we analyzed 2,741 base pairs of mitochondrial and nuclear genes from 43 specimens belonging to all species and the majority of subspecies described for Dendrocolaptes to evaluate species limits and reconstruct its diversification through time. Our phylogenies recovered a monophyletic Dendrocolaptes, with two main highly supported internal clades corresponding to the D. certhia and D. picumnus species complexes. Also, our analyses supported the monophyly of most Dendrocolaptes species recognized today, except D. picumnus, which was consistently recovered as paraphyletic with respect to D. hoffmannsi. A coalescent‐based test supported a total of 15 different lineages in Dendrocolaptes and indicated that the number of currently accepted species within the genus may be greatly underestimated. Particularly relevant, when combined with previous analyses based on plumage characters, comparative high levels of genetic differentiation and coalescent analyses support the recognition of D. picumnus transfasciatus as a full species that is already under threat. Ancestral area reconstructions suggest that diversification in Dendrocolaptes was centered in lowland Amazonia, with several independent dispersal events leading to differentiation into different adjacent dry and high elevation forest types throughout the Neotropics, mainly during the Middle and Late Pleistocene.  相似文献   
32.
33.
Hydrobiologia - Biological invasions and climate change are important drivers of biodiversity loss. In freshwater ecosystems, golden and zebra mussels are two highly aggressive invasive species...  相似文献   
34.

The effects of invaders on native species are usually tested using species mean trait values over long time scales. However, considering individual variation over short timescales can help us better understand the interaction between invaders and native species. We compared trophic traits of the non-native guppy (Poecilia reticulata) and the native Brazilian poeciliid Phalloceros harpagos using experiments simulating the early stages of an invasive process. We used short-term mesocosms to simulate an early invasion scenario, where the two species were placed together, and a pre-invasion scenario, where species were kept separated, and analyzed interspecific and intraspecific trophic variability. We also compared the foraging efficiency of species in laboratory experiments. We found no differences on the mean diet of both species between pre and early invasion treatments. At the individual level, in the early invasion scenario, individuals of both species reduced their trophic niche as a probable effect of the presence of the heterospecific. Phalloceros harpagos had higher consumption rates than guppies indicating greater efficiency in feeding on invertebrates. Our results suggest that non-native species were not intrinsically better consumers of high-quality resources. Instead, intraspecific variation might be playing an overlooked role in shaping interactions between species during the early stages of invasion.

  相似文献   
35.
The aim of this study was to use estrus synchronization protocols to favor fixed-time artificial insemination and consequently fixed-time embryo collection, and increase embryo production using eCG, in gits. In a cross over design, nine Piau breed gilts were subjected to 18 days of oral progesterone; P4 group did not receive any further; GnRH group received 25µg of GnRH 104 hours after the final application of P4; and eCG+GnRH group received 1000IU of eCG 24 hours after the final P4 in addition to GnRH for subsequent embryo collection, that was performed six days after first AI, by laparotomy. Artificial insemination was performed after 12 and 24 hours of estrus in P4 group, and 128 and 144 hours in GnRH and eCG+GnRH groups. The number of CL (8.6±3.9; 8.3±2.1; 26.7±15.0) and anovulatory follicles (4.3±3.7; 3.9±3.9; 17.2±9.5) was higher in the eCG+GnRH gilts (P<0.05). However, the use of 1000 IU of eCG reduced (P<0.05) the number of total structures (5.2±3.6; 5.1±3.1; 1.7±2.7), viable embryos (5.0±3.5; 4.8±3.3; 0.4±0.7), freezable embryos (3.6±3.4; 3.3±3.8; 0.1±0.3) and recovery rate (63.7±38.9; 58.6±24.7; 5.38±9.5). P4 and GnRH protocols were effective in the production and recovery of embryos. However, the use of 1000 IU of eCG, 24 hours after P4, was not effective in promoting the production of embryos, although the animals had superovulated.  相似文献   
36.
Limnology - Metacommunity structure of stream invertebrates is contingent on complex interplays between species dispersal ability, spatial extent and watershed environmental specificities. Previous...  相似文献   
37.
Animals have adapted behavioral and physiological strategies to conserve energy during periods of adverse conditions. Heterothermy is one such adaptation used by endotherms. While heterothermy—fluctuations in body temperature and metabolic rate—has been shown in large vertebrates, little is known of the costs and benefits of this strategy, both in terms of energy and in terms of fitness. Hence, our objective was to model the energetics of seasonal heterothermy in the largest Arctic ungulate, the muskox (Ovibos moschatus), using an individual‐based energy budget model of metabolic physiology. We found that the empirically based drop in body temperature (winter max ~−0.8°C) overwinter in adult females resulted in substantial fitness benefits in terms of reduced daily energy expenditure and body mass loss. Body mass and energy reserves were 8.98% and 14.46% greater in modeled heterotherms compared to normotherms by end of winter. Based on environmental simulations, we show that seasonal heterothermy can, to some extent, buffer the negative consequences of poor prewinter body condition or reduced winter food accessibility, leading to greater winter survival (+20%–30%) and spring energy reserves (+10%–30%), and thus increased probability of future reproductive success. These results indicate substantial adaptive short‐term benefits of seasonal heterothermy at the individual level, with potential implications for long‐term population dynamics in highly seasonal environments.  相似文献   
38.
39.
Climate change likely will lead to increasingly favourable environmental conditions for many parasites. However, predictions regarding parasitism's impacts often fail to account for the likely variability in host distribution and how this may alter parasite occurrence. Here, we investigate potential distributional shifts in the meningeal worm, Parelaphostrongylosis tenuis, a protostrongylid nematode commonly found in white‐tailed deer in North America, whose life cycle also involves a free‐living stage and a gastropod intermediate host. We modelled the distribution of the hosts and free‐living larva as a complete assemblage to assess whether a complex trophic system will lead to an overall increase in parasite distribution with climate change, or whether divergent environmental niches may promote an ecological mismatch. Using an ensemble approach to climate modelling under two different carbon emission scenarios, we show that whereas the overall trend is for an increase in niche breadth for each species, mismatches arise in habitat suitability of the free‐living larva vs. the definitive and intermediate hosts. By incorporating these projected mismatches into a combined model, we project a shift in parasite distribution accounting for all steps in the transmission cycle, and identify that overall habitat suitability of the parasite will decline in the Great Plains and southeastern USA, but will increase in the Boreal Forest ecoregion, particularly in Alberta. These results have important implications for wildlife conservation and management due to the known pathogenicity of parelaphostrongylosis to alternate hosts including moose, caribou and elk. Our results suggest that disease risk forecasts which fail to consider biotic interactions may be overly simplistic, and that accounting for each of the parasite's life stages is key to refining predicted responses to climate change.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号