首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   40篇
生物科学   187篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   9篇
  2008年   6篇
  2007年   1篇
  2006年   6篇
  2005年   9篇
  2004年   5篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   6篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
排序方式: 共有187条查询结果,搜索用时 19 毫秒
31.
32.
Young adult rats, either control or essential fatty acid deficient, were administered either [3-H] oleic acid or [3-H] arachidonic acid by stomach tube. In addition, a group of control rats was given [3-H] palmitic acid. The rats were killed at various times therafter, and the radioactivity of the lipids of brain and plasma was examined. In confirmation of previous work, the blood lipid label was found to rise rapidly and then fall, wheras the activity of brain lipids increased slowly and did not show a decline through the 24-h period studied. Analysis of the brain uptake data according to first-order kinetics confirmed the impressions gained from visual inspection of the data. The initial rate of uptake of arachidonic acid was about 4.5 times that of oleic acid in control animals and in deficient animals. Essential fatty acid deficiency, however, did not induce an altered rate of uptake for either oleic acid or arachidonic acid. The rate of uptake of palmitic acid by control rats was not significantly different from that of oleic acid. Even though the initial rates of incorporation of oleic and arachidonic acids were not changed during essential fatty acid deficiency, the final levels of radioactivity obtained in brain lipids were higher in deficient rats with both fatty acids. The plateau value obtained with oleic acid was 1.5 times higher in deficient animals, while the plateau value for arachidonic acid was 1.7 times higher. An experiment in which deficient animals were allowed access to a control diet for 12 or 24 h prior to the labeling experiment suggested that the higher levels of radioactivity found in brain lipids of deficient animals was not due to an isotope dilution effect. Such animals still displayed the labeling pattern of deficient animals with arachidonic acid, while the results with oleic acid varied somewhat. Our results suggest that essential fatty acid deficiency does not alter the ability of the brain to take up the fatty acids studied. However, the fatty acids, especially arachidonic, are retained in the brain to a greater extent in the deficient animals.  相似文献   
33.
The envelope glycoprotein (G protein) of vesicular stomatitis virus is a transmembrane protein that exists as a trimer of identical subunits in the virus envelope. We have examined the effect of modifying the environment surrounding the membrane-spanning sequence on the association of G protein subunits using resonance energy transfer. G protein subunits were labeled with either fluorescein isothiocyanate or rhodamine isothiocyanate. When the labeled G proteins were mixed in the presence of the detergent octyl glucoside, mixed trimers containing both fluorescent labels were formed as a result of subunit exchange, as shown by resonance energy transfer between the two labels. In contrast when fluorescein- and rhodamine-labeled G proteins were mixed in the presence of Triton X-100, no resonance energy transfer was observed, indicating that subunit exchange did not occur in Triton X-100 micelles. However, if labeled G proteins were first mixed in the presence of octyl glucoside, energy transfer persisted after dilution with buffer containing Triton X-100. This result indicates that the G protein subunits remained associated in Triton X-100 micelles and that the failure to undergo subunit exchange was due to lack of dissociation of G protein subunits. Chemical cross-linking experiments confirmed that G protein was trimeric in the presence of Triton X-100. The efficiency of resonance energy transfer between labeled G protein was higher when G proteins were incorporated into dimyristoylphosphatidylcholine liposomes compared to detergent micelles. This result indicates that the labels exist in a more favorable environment for energy transfer in membranes than in detergent micelles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
34.
Vesicular stomatitis virus M protein in the nuclei of infected cells.   总被引:14,自引:10,他引:4       下载免费PDF全文
D S Lyles  L Puddington    B J McCreedy  Jr 《Journal of virology》1988,62(11):4387-4392
The M protein of vesicular stomatitis virus (VSV) was localized in the nuclei and cytoplasm of VSV-infected cells by subcellular fractionation and immunofluorescence microscopy. Nuclei isolated from VSV-infected Friend erythroleukemia cells were fractionated into a nuclear membrane and a nucleoplasm fraction by DNase digestion and differential centrifugation. G protein was present in the membrane fraction, and M protein was present in the nucleoplasm fraction. Immunofluorescence detection of M protein in the nucleus required that fixed cells be permeabilized with higher concentrations of detergent than were required for detection of M protein in the cytoplasm of VSV-infected BHK cells.  相似文献   
35.
36.
Viral matrix (M) proteins bind the nucleoprotein core (nucleocapsid) to host membranes during the process of virus assembly by budding. Previous studies using truncated M proteins had implicated the N-terminal 50 amino acids of the vesicular stomatitis virus M protein in binding both membranes and nucleocapsids and a sequence from amino acids 75-106 as an additional membrane binding region. Structure-based mutations were introduced into these two regions, and their effects on membrane association and incorporation into nucleocapsid-M protein complexes were determined using quantitative assays. The results confirmed that the N terminus of M protein is involved in association with plasma membranes as well as nucleocapsids, although these two activities were differentially affected by individual mutations. Mutations in the 75-106 region affected incorporation into nucleocapsid-M complexes but had only minor effects on association with membranes. The ability of site-specific mutant M proteins to complement growth of temperature-sensitive M mutant virus did not correlate well with the ability to associate with membranes or nucleocapsids, suggesting that complementation involves an additional activity of M protein. Mutants with similar abilities to associate with membranes and nucleocapsids but differing in complementation activity were incorporated into infectious cDNA clones. Infectious virus was repeatedly recovered containing mutant M proteins capable of complementation but was never recovered with mutant M proteins that lacked complementation activity, providing further evidence for a separate activity of M protein that is essential for virus replication.Most viruses that have a membrane or envelope as part of their structure acquire their envelopes by budding from the plasma membrane of the host cell. For budding to occur, the nucleoprotein core of the virus (nucleocapsid) must interact with the cytoplasmic surface of the host membrane. For many viruses this interaction is mediated by a matrix (M)2 protein that binds to both the nucleocapsid and the host membrane (1, 2). Despite the similarity in the functions of viral M proteins, there is little structural or sequence similarity among the M proteins of different virus families (3). Thus, understanding the relationship of structure to function must be undertaken for individual M proteins before the general principles involved in virus budding can be understood. The goal of the experiments described here was to determine sequences in the M protein of vesicular stomatitis virus (VSV) involved in binding to membranes and nucleocapsids.VSV is the prototype member of the Rhabdoviridae family and has been widely studied to determine mechanisms involved in virus budding (2). The core of the virus contains an ∼11-kilobase negative-stranded RNA genome covered by 1300 copies of a single nucleocapsid protein (4). The nucleocapsid also contains lesser amounts of two proteins, P and L, which constitute the viral RNA-dependent RNA polymerase. The envelope contains a single species of transmembrane glycoprotein (G protein) that mediates virus attachment and entry into host cells. The virion contains ∼2000 copies of the M protein (4), which binds the nucleocapsid to the envelope and condenses the nucleocapsid into a tightly coiled helical nucleocapsid-M protein (NCM) complex that gives the virion its bullet-like shape (5-8). In cells infected with VSV and in transfected cells that express M protein in the absence of other VSV components, M protein is present both in a soluble form and bound to the cytoplasmic surface of the host plasma membrane (9-18). Mutagenesis studies, affinity labeling, and membrane reconstitution experiments have suggested that a combination of hydrophobic and ionic interactions mediate M protein binding to membranes by binding acidic phospholipids on the inner surface of the host plasma membrane (for review, see Ref. 19). Binding of M protein to nucleocapsids is less well understood than its binding to membranes. Most of the M protein in isolated NCM complexes is bound in a rapidly reversible equilibrium (20). However, M protein does not bind to nucleocapsids from which all of the M protein has been dissociated or to intracellular nucleocapsids that have never been assembled with M protein (11, 20). This suggests that binding of M protein to nucleocapsids in infected cells must be initiated in a separate step, after which most of the M protein is recruited into the NCM complex through the reversible binding step.M protein does not have separately folded domains that mediate binding to membranes versus nucleocapsids. The 229-amino acid (aa) M protein contains a positively charged N terminus (aa 1-50) that is highly exposed to proteolysis. The remainder of M protein (aa 51-229) is compactly folded to form a protease-resistant core (16, 21-23). The ability to obtain crystals of M protein required proteolytic removal of both the N-terminal sequence (aa 1-47) and a hydrophobic sequence (aa 121-124) to prevent M protein self-association (21, 22); however, the resulting structure showed a single-domain fold for the crystallized portion of M. In the present study we focused on two regions of the M protein structure that had been suggested to be involved in binding to either membranes or nucleocapsids; 1) previous data had implicated the N-terminal sequence in binding to both nucleocapsids and membranes (9, 10, 16, 22-25) and 2) deletion mutagenesis studies had implicated an additional region from aa 75-106 in membrane binding (16).In the experiments described here, M protein sequence substitutions were made using a scanning approach in the N-terminal sequence, and substitutions were based on the crystal structure in the 75-106-aa region. These mutants were used to determine the specific amino acids involved in these interactions. The results confirm that the N terminus of M protein is involved in association with plasma membranes as well as nucleocapsids, although these two activities are differentially affected by individual mutations. Mutations in the 75-106-aa region affected incorporation into NCM complexes but had only minor effects on association with membranes. Furthermore, the ability of mutant M proteins to function in the context of virus infection suggested that a new activity of M protein that is separate from its ability to associate with membranes or NCM complexes is critical for virus assembly.  相似文献   
37.
38.
Bortezomib is a chemotherapeutic agent used to treat several cancers; however, it exhibits severe side effects in testicular tissue. We investigated the use of agomelatine to prevent testicular tissue damage caused by bortezomib. We used 36 male Sprague-Dawley rats divided randomly into six equal groups: group 1, no treatment control; group 2, agomelatine treatment only; group 3, bortezomib treatment only for 48 h; group 4, bortezomib + agomelatine treatment for 48 h; group 5, bortezomib treatment only for 72 h; and group 6, bortezomib + agomelatine treatment for 72 h. After treatments, the rats were sacrificed and testicular tissue was harvested. Lipid oxidation (LPO) and superoxide dismutase (SOD) levels in the tissues were determined using biochemical methods. Tissue samples also were examined using histopathological and immunohistochemical techniques. The LPO level was increased, while the SOD level was decreased in the bortezomib treated groups. We found that agomelatine treatment normalized LPO and SOD activities in the bortezomib treated groups. In the spermatogonia and Sertoli cells, the staining density of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and caspase 3 were decreased in the bortezomib + agomelatine groups at both 48 and 72 h compared to bortezomib only treated groups. We observed maturation arrest, basal membrane thickening, increase in inflammatory cells and connective tissue, and edema between germ cells in the bortezomib only treated groups. By contrast, normal basal membrane, less edema and more normal maturation were observed in the bortezomib + agomelatine groups at 48 and 72 h. We found that agomelatine reduced the damaging effects of bortezomib. The use of agomelatine to prevent bortezomib induced testicular tissue damage in human patients should be investigated further.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号