首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9916篇
  免费   925篇
生物科学   10841篇
  2024年   3篇
  2023年   53篇
  2022年   42篇
  2021年   278篇
  2020年   136篇
  2019年   188篇
  2018年   232篇
  2017年   194篇
  2016年   307篇
  2015年   536篇
  2014年   592篇
  2013年   639篇
  2012年   996篇
  2011年   991篇
  2010年   575篇
  2009年   497篇
  2008年   759篇
  2007年   732篇
  2006年   656篇
  2005年   588篇
  2004年   536篇
  2003年   488篇
  2002年   420篇
  2001年   88篇
  2000年   40篇
  1999年   47篇
  1998年   65篇
  1997年   44篇
  1996年   17篇
  1995年   17篇
  1994年   10篇
  1993年   12篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1965年   2篇
  1954年   2篇
  1931年   1篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.
Plant stanols and sterols of the 4-desmethyl family (e.g., sitostanol and sitosterol) effectively decrease LDL cholesterol concentrations, whereas 4,4-dimethylsterols (alpha-amyrin and lupeol) do not. Serum carotenoid concentrations, however, are decreased by both plant sterol families. The exact mechanisms underlying these effects are not known, although effects on micellar composition have been suggested. With a liver X receptor (LXR) coactivator peptide recruitment assay, we showed that plant sterols and stanols from the 4-desmethylsterol family activated both LXRalpha and LXRbeta, whereas 4,4-dimethyl plant sterols did not. In fully differentiated Caco-2 cells, the functionality of this effect was shown by the increased expression of ABCA1, one of the known LXR target genes expressed by Caco-2 cells in measurable amounts. The LXR-activating potential of the various plant sterols/stanols correlated positively with ABCA1 mRNA expression. Reductions in serum hydrocarbon carotenoids could be explained by the effects of the 4-desmethyl family and 4,4-dimethylsterols on micellar carotenoid incorporation. Our findings indicate that the decreased intestinal absorption of cholesterol and carotenoids by plant sterols and stanols is caused by two distinct mechanisms.  相似文献   
992.
Biochemical and mechanical properties of subchondral bone in osteoarthritis   总被引:2,自引:0,他引:2  
Bailey AJ  Mansell JP  Sims TJ  Banse X 《Biorheology》2004,41(3-4):349-358
The subchondral bone has long been known to thicken in osteoarthritis. However, recent evidence has demonstrated that the turnover of the bone is increased several fold, and further suggests that the thickening occurs prior to degradation of the articular cartilage, indicating that it plays a role in the pathogenesis of osteoarthritis. The mechanical and biochemical properties of the subchondral bone are therefore of particular interest in any attempt to determine the nature of the factors initiating osteoarthritis. We have shown that the subchondral bone collagen of the femoral head possessed a 20-fold increase in turnover, as assessed by procollagen rate of synthesis and metalloproteinase degradation, and a 25% decrease in mineralisation. This increased metabolism and high lysyl hydroxylation leads to narrower and weaker fibres. Additionally the phenotypic expression of the osteoblasts is modified to produce increasing proportions of type I homotrimer in addition to the normal type I heterotrimer, which further reduces the mechanical strength of the bone. Overall, the narrow immature collagen fibres, the reduction in pyrrole cross-linking, decreased mineralisation, and increased amounts of type I homotrimer, all contribute to a weakening of the mechanical properties of the subchondral bone.  相似文献   
993.
Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between "yield" and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially "screen," in silico, those sequences suitable for expression in bacteria from those that must be expressed in more complex hosts.  相似文献   
994.
995.
996.
Calcium and mitochondria   总被引:8,自引:0,他引:8  
The literature suggests that the physiological functions for which mitochondria sequester Ca(2+) are (1). to stimulate and control the rate of oxidative phosphorylation, (2). to induce the mitochondrial permeability transition (MPT) and perhaps apoptotic cell death, and (3). to modify the shape of cytosolic Ca(2+) pulses or transients. There is strong evidence that intramitochondrial Ca(2+) controls both the rate of ATP production by oxidative phosphorylation and induction of the MPT. Since the results of these processes are so divergent, the signals inducing them must not be ambiguous. Furthermore, as pointed out by Balaban [J. Mol. Cell. Cardiol. 34 (2002 ) 11259-11271], for any repetitive physiological process dependent on intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)), a kind of intramitochondrial homeostasis must exist so that Ca(2+) influx during the pulse is matched by Ca(2+) efflux during the period between pulses to avoid either Ca(2+) buildup or depletion. In addition, mitochondrial Ca(2+) transport modifies both spatial and temporal aspects of cytosolic Ca(2+) signaling. Here, we look at the amounts of Ca(2+) necessary to mediate the functions of mitochondrial Ca(2+) transport and at the mechanisms of transport themselves in order to set up a hypothesis about how the mechanisms carry out their roles. The emphasis here is on isolated mitochondria and on general mitochondrial properties in order to focus on how mitochondria alone may function to fulfill their physiological roles even though the interactions of mitochondria with other organelles, particularly with endoplasmic and sarcoplasmic reticulum [Sci. STKE re1 (2004) 1-9], may also influence this story.  相似文献   
997.
Hypoxia-inducible factor-1 (HIF) is regulated by oxygen-dependent prolyl hydroxylation. Of the three HIF prolyl hydroxylases (PHD1, 2 and 3) identified, PHD3 exhibits restricted substrate specificity in vitro and is induced in different cell types by diverse stimuli. PHD3 may therefore provide an interface between oxygen sensing and other signalling pathways. We have used co-purification and mass spectrometry to identify proteins that interact with PHD3. The cytosolic chaperonin TRiC was found to copurify with PHD3 in extracts from several cell types. Our results indicate that PHD3 is a TRiC substrate, providing another step at which PHD3 activity may be regulated.  相似文献   
998.
We analyzed previously reported mtDNA haplogroup frequencies of 577 individuals and hypervariable segment 1 (HVS1) sequences of 265 individuals from Native American tribes in western North America to test hypotheses regarding the settlement of this region. These data were analyzed to determine whether Hokan and Penutian, two hypothesized ancient linguistic stocks, represent biological units as a result of shared ancestry within these respective groups. Although the pattern of mtDNA variation suggests regional continuity and although gene flow between populations has contributed much to the genetic landscape of western North America, some evidence supports the existence of both the Hokan and Penutian phyla. In addition, a comparison between coastal and inland populations along the west coast of North America suggests an ancient coastal migration to the New World. Similarly high levels of haplogroup A among coastal populations in the Northwest and along the California coast as well as shared HVS1 sequences indicate that early migrants to the New World settled along the coast with little gene flow into the interior valleys.  相似文献   
999.
Genetically encoded signaling proteins provide remarkable opportunities to design and target the expression of molecules that can be used to report critical cellular events in vivo, thereby markedly extending the scope and physiological relevance of studies of cell function. Here we report the development of a transgenic mouse expressing such a reporter and its use to examine postsynaptic signaling in smooth muscle. The circularly permutated, Ca2+-sensing molecule G-CaMP (Nakai, J., Ohkura, M., and Imoto, K. (2001) Nat. Biotechnol. 19, 137-141) was expressed in vascular and non-vascular smooth muscle and functioned as a lineage-specific intracellular Ca2+ reporter. Detrusor tissue from these mice was used to identify two separate types of postsynaptic Ca2+ signals, mediated by distinct neurotransmitters. Intrinsic nerve stimulation evoked rapid, whole-cell Ca2+ transients, or "Ca2+ flashes," and slowly propagating Ca2+ waves. We show that Ca2+ flashes occur through P2X receptor stimulation and ryanodine receptor-mediated Ca2+ release, whereas Ca2+ waves arise from muscarinic receptor stimulation and inositol trisphosphate-mediated Ca2+ release. The distinct ionotropic and metabotropic postsynaptic Ca2+ signals are related at the level of Ca2+ release. Importantly, individual myocytes are capable of both postsynaptic responses, and a transition between Ca2+ -induced Ca2+ release and inositol trisphosphate waves occurs at higher synaptic inputs. Ca2+ signaling mice should provide significant advantages in the study of processive biological signaling.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号