首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   34篇
  国内免费   61篇
生物科学   610篇
  2023年   6篇
  2022年   14篇
  2021年   34篇
  2020年   22篇
  2019年   15篇
  2018年   16篇
  2017年   23篇
  2016年   24篇
  2015年   35篇
  2014年   32篇
  2013年   53篇
  2012年   55篇
  2011年   55篇
  2010年   33篇
  2009年   17篇
  2008年   31篇
  2007年   28篇
  2006年   20篇
  2005年   17篇
  2004年   19篇
  2003年   18篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1987年   1篇
排序方式: 共有610条查询结果,搜索用时 15 毫秒
131.
132.
133.
134.
Radiation-induced pulmonary fibrosis (RIPF) is a life-threatening complication of thoracic radiotherapy, which contributes to continued deterioration in pulmonary function. Sphingosine-1 phosphate receptor 3 (S1PR3) has been identified as a crucial molecule in fibrosis. Accumulating evidence indicated that the inhibition of the S1PRs ameliorates fibrogenesis. Thus, this study aims to explore whether S1PR3 participates in RIPF and elucidates the molecular mechanisms underlying S1PR3-modulated epithelial–mesenchymal transition (EMT) in transforming growth factor-β1-induced pulmonary epithelia. A recombinant adeno-associated viral-mediated S1PR3 (AAV-S1PR3) gene therapy analyzed the effect of S1PR3 gene deficiency on the altered histology structure and molecular mechanisms in the lung of mice with whole-lung irradiation. Compared with the AAV-negative control mice, AAV-mediated S1PR3 knockdown in the lung of mice attenuated pulmonary fibrosis induced by the radiation, as indicated by the alleviation of collagen accumulation, lessened histopathological alterations, and the suppression of inflammatory cells infiltration. S1PR3 deficiency reversed the RIPF concomitantly with abrogated EMT-related protein (α-smooth muscle actin). Consistently, S1PR3-deficient pulmonary epithelia inhibited the EMT process changes and fibrosis formation. Furthermore, S1PR3 was designated as one of the target genes for microRNA-495-3p (miR-495-3p). The inhibition of miR-495-3p promoted the expression of S1PR3 in pulmonary epithelia, whereas the overexpression of miR-495-3p inhibited the S1PR3/SMAD2/3 pathway and suppressed the EMT process. Collectively, miR-495-3p might be a negative regulator of the EMT process in fibrosis formation by inhibiting the targeted S1PR3 gene. These results established a link between the S1PR3 gene, the EMT process, and the fibrosis, suggesting the pharmacological blockage of S1PR3 as a potential therapeutic strategy for RIPF.  相似文献   
135.
Liriodendron tulipifera L., a member of the Magnoliaceae, occupies an important phylogenetic position as a basal angiosperm that has retained numerous putatively ancestral morphological characters, and thus has often been used in studies of the evolution of flowering plants and of specific gene families. However, genomic resources for these early branching angiosperm lineages are very limited. In this study, we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from L. tulipifera. Flow cytometry estimates that this nuclear genome is approximately 1,802 Mbp per haploid genome (±16 SD). The BAC library contains 73,728 clones, a 4.8-fold genome coverage, with an average insert size of 117 kb, a chloroplast DNA content of 0.2%, and little to no bacterial sequences nor empty vector content clones. As a test of the utility of this BAC library, we screened the library with six single/low-copy genic probes. We obtained at least two positive clones for each gene and confirmed the clones by DNA sequencing. A total of 182 paired end sequences were obtained from 96 of the BAC clones. Using BLAST searches, we found that 25% of the BAC end sequences were similar to DNA sequences in GenBank. Of these, 68% shared sequence with transposable elements and 25% with genes from other taxa. This result closely reflected the content of random sequences obtained from a small insert genomic library for L. tulipifera, indicating that the BAC library construction process was not biased. The first genomic DNA sequences for Liriodendron genes are also reported. All the Liriodendron genomic sequences described in this paper have been deposited in the GenBank data library. The end sequences from shotgun genomic clones and BAC clones are under accession DU169330–DU169684. Partial sequences of Gigantea, Frigida, LEAFY, cinnamyl alcohol dehydrogenase, 4-coumarate:CoA ligase, and phenylalanine ammonia-lyase genes are under accession DQ223429–DQ223434. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
136.
In our previous study, we found that the transforming growth factor (TGF)-β1 enhanced the metastatic and invasive potential of gastric cancer cells. Proteomics was employed in this study to further illustrate the underlying molecular mechanisms. After two-dimensional electrophoresis, image analysis, spot identification, protein identification and database analysis, three proteins, namely, glutathione-S-transferase-π (GST-π), cofilin and heat shock protein 27 (HSP27), were found to be up-regulated in TGF-β1 treated SGC-7901 cells. The findings were further confirmed by Western blot analysis. These results suggested that GST-π, cofilin and HSP27 might participate in enhanced invasive potential induced by TGF-β1.  相似文献   
137.
COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.  相似文献   
138.
Y Guo  H Wang  Y Li  Y Song  C Chen  Y Liao  L Ren  C Guo  W Tong  W Shen  M Chen  X Mao  G Guo  Q Zou 《Journal of bacteriology》2012,194(15):4146-4147
The infection rate of Helicobacter pylori is high all over the world, especially in the Chinese Tibetan Plateau. Here, we report the genome sequence of Helicobacter pylori strain XZ274 isolated from a Tibetan patient with gastric cancer. The strain contains 1,634,138 bp with 1,654 coding sequences and a pXZ274 plasmid of 22,406 bp with 26 coding sequences. This is the first complete genome sequence of Helicobacter pylori from the Tibetan Plateau in China.  相似文献   
139.
The 3',5'-cyclic phosphate prodrug 9-[β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl]-2-amino-6-ethoxypurine, PSI-352938 1, has demonstrated promising anti-HCV efficacy in vitro and in human clinical trials. A structure-activity relationship study of the nucleoside 3',5'-cyclic phosphate series of β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl nucleoside prodrugs was undertaken and the anti-HCV activity and in vitro safety profile were assessed. Cycloalkyl 3',5'-cyclic phosphate prodrugs were shown to be significantly more potent as inhibitors of HCV replication than branched and straight chain alkyl 3',5'-cyclic phosphate prodrugs. No cytotoxicity and mitochondrial toxicity for prodrugs 12, 13 and 19 were observed at concentrations up to 100μm in vitro. Cycloalkyl esters of 3',5'-cyclic phosphate nucleotide prodrugs demonstrated the ability to produce high levels of active triphosphate in clone-A cells and primary human hepatocytes. Compounds 12, 13 and 19 also demonstrated the ability to effectively deliver in vivo high levels of active nucleoside phosphates to rat liver.  相似文献   
140.
旨在揭示马铃薯OSM-3b基因表达对胁迫的响应。分离获得了OSM-3b的cDNA,构建OSM-3b的重组菌株DH-OSM,实现OSM-3b在大肠杆菌中的表达,RT-PCR检测了NaCl和PEG6000不同浓度梯度下OSM-3b的表达。结果显示,NaCl浓度在1%以上随盐浓度升高,OSM-3b mRNA的表达逐渐下降;在PEG6000浓度从0.25%升至4.0%时,OSM-3b的mRNA表达明显上升;在NaCl胁迫和PEG6000浓度梯度渗透胁迫下,重组菌株DH-OSM菌的菌落存活数统计分析结果显示,在不同NaCl浓度下重组菌的菌落存活数与对照趋势一致,重组菌菌落存活数峰值出现在的PEG6000浓度2.0%时,而对照菌DH-28c峰值则出现在PEG6000浓度1.0%时。结果表明,OSM-3b在大肠杆菌中表达对NaCl胁迫没有响应,但可缓冲渗透胁迫对其存活的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号