首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
生物科学   64篇
  2015年   1篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有64条查询结果,搜索用时 109 毫秒
31.
We have used voluntary tongue contraction to test whether we can image activation of the hypoglossal nuclei within the human brain stem by using functional magnetic resonance imaging (fMRI). Functional images of the whole brain were acquired in eight subjects by using T2-weighted echo planar imaging (blood oxygen level development) every 6.2 s. Sequences of images were acquired during 12 periods of 31-s "isometric" rhythmic tongue contraction alternated with 12 periods of 31-s tongue relaxation. Noise arising from cardiac- and respiratory-related movement was removed either by filtration (high pass; cutoff 120 s) or by inclusion in the statistical analysis as confounding effects of no interest. For the group, tongue contraction was associated with significant signal increases (P < 0.05 corrected for multiple comparisons) in the sensorimotor cortex, supplementary motor area, operculum, insula, thalamus, and cerebellum. For the group and for six of eight individuals, significant signal increases were also seen within the medulla (P < 0.001, predefined region of interest with no correction for multiple comparisons); this signal is most likely to reflect neuronal activation associated with the hypoglossal motor nuclei. The data demonstrate that fMRI can be used to detect, simultaneously, the cerebral and brain stem control of tongue movement.  相似文献   
32.
Across multiple timescales, acoustic regularities of speech match rhythmic properties of both the auditory and motor systems. Syllabic rate corresponds to natural jaw-associated oscillatory rhythms, and phonemic length could reflect endogenous oscillatory auditory cortical properties. Hemispheric lateralization for speech could result from an asymmetry of cortical tuning, with left and right auditory areas differentially sensitive to spectro-temporal features of speech. Using simultaneous electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) recordings from humans, we show that spontaneous EEG power variations within the gamma range (phonemic rate) correlate best with left auditory cortical synaptic activity, while fluctuations within the theta range correlate best with that in the right. Power fluctuations in both ranges correlate with activity in the mouth premotor region, indicating coupling between temporal properties of speech perception and production. These data show that endogenous cortical rhythms provide temporal and spatial constraints on the neuronal mechanisms underlying speech perception and production.  相似文献   
33.
Three phthalocyanine dyes-sensitizers were incorporated into two types of human T leukemia cells from two cell-lines: CCRF and MOLT 4. The efficiency of the dye incorporation into cells and photochemical properties of stained cells were investigated using fluorescence spectroscopy. The dyes exhibited different properties in each of the two cell-lines. Small differences in cell membrane properties have a strong influence on the efficiency of dye incorporation and on the course of photodynamic reaction. It is suggested that, for a given patient, an optimal dye-sensitizer should be established before photodynamic treatment.  相似文献   
34.
Experience and results of neuropsychological studies have shown that motor imagery can improve motor performance and enhance motor learning. In recent years several electro-physiological and functional imaging studies have investigated the physiological basis for this observation. In the present essay we review two of our recent studies, in which we compared motor imagery with motor preparation and motor execution. In the first we used positron emission tomography to describe their functional anatomy and in the second we employed electromyography, H-reflexes and transcranial magnetic stimulation to delineate their electrophysiological characteristics. Both studies demonstrated that motor imagery shares some characteristics with motor preparation and other, additional ones with motor execution. Thus it can be seen as a special form of motor behaviour, similar but distinct from both motor preparation and execution. This combination of mutual and distinct characteristics may be the key to its successful role in motor learning. Special issue dedicated to Dr. Herman Bachelard.  相似文献   
35.
36.
37.
38.
39.
40.
Stroke is a major cause of disability in all age groups. Although the value of specific rehabilitative therapies is now acknowledged, the mechanisms of impairment and recovery are not well understood. There is growing interest in the role that central nervous system reorganisation might play in the recovery process, and in particular whether this reorganisation can be manipulated to provide clinical benefits for patients. The careful use of non-invasive techniques such as functional magnetic resonance imaging and transcranial magnetic stimulation allows the study of the working human brain, and studies in humans suggest that functionally relevant adaptive changes occur in cerebral networks following stroke. An understanding of how these changes influence the recovery process will facilitate the development of novel therapeutic techniques that are based on neurobiological principles and will allow the delivery of specific therapies to appropriately targeted patients suffering from stroke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号