首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   15篇
生物科学   211篇
  2023年   4篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   11篇
  2013年   11篇
  2012年   26篇
  2011年   19篇
  2010年   13篇
  2009年   6篇
  2008年   15篇
  2007年   11篇
  2006年   15篇
  2005年   12篇
  2004年   14篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
21.
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GM1 exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.  相似文献   
22.
The aim of this study was to investigate (i) the cholecystokinin, somatostatin and apelin mRNA levels, (ii) the changes in levels and localization of these peptides, (iii) relation between these peptides, (iv) antiapoptotic effects and (v) antioxidant effects of ghrelin. The rats were divided into four groups second day after birth. These groups were respectively treated with physiological saline, ghrelin (100μg/kg/day), streptozotocin (100mg/kg), ghrelin and streptozotocin. After four weeks, small intestine and blood samples were taken from rats. Cholecystokinin mRNA and peptide, somatostatin mRNA, release to duodenal lumen of apelin peptide and apelin mRNA signals decreased in ghrelin-treated diabetic rats compared to the diabetic group. There was no statistically significant difference among the four groups for somatostatin and apelin peptides. Caspase-3 signals were not observed only in diabetic group treated with ghrelin. Caspase-8 signals were increased while PCNA signals were decreased in diabetic group given ghrelin compared to diabetic group. Small intestine CAT, SOD, GP(x) and GST activities and GSH levels were decreased and LPO, PC levels were increased in diabetic rats. Administration of ghrelin to diabetic rats caused an increase in intestinal CAT, SOD, GP(x) and GST activities and GSH levels, while PC levels decreased. As a result, we observed positive changes in diabetic rats treated with ghrelin in both microscopic and biochemical studies. We can suggest that ghrelin may be an important hormone for the treatment of diabetes.  相似文献   
23.
24.
In the present study, some acetamide derivatives were synthesized and their potential analgesic activities were investigated. N-(benzothiazol-2-yl)-2-[(1-substituted-1H-tetrazol-5-yl)thio]acetamide derivatives were obtained by the nucleophilic substitution reaction of 2-chloro-N-(benzothiazole-2-yl)acetamides with appropriate tetrazol-5-thioles. The chemical structures of the compounds were elucidated by IR, 1H-NMR, 13C-NMR and FAB?-MS spectral data and elemental analyses. The prepared compounds were investigated for their potential analgesic properties against thermal, mechanical and chemical nociceptive stimuli using hot-plate, tail-clip and acetic acid-induced writhing tests, respectively. The assessment of motor coordination was carried out using Rota-Rod test. Tested compounds applied at 100 mg/kg doses caused significant decrease in acetic acid-induced writhing responses and increase in hot-plate and tail-clip latencies. None of the compounds exhibited destructive effect on motor coordination of the mice in Rota-Rod performance.  相似文献   
25.
Macroautophagy (autophagy) is the major intracellular degradation pathway for long-lived proteins and organelles. It helps the cell to survive a spectrum of stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Moreover, abnormalities of autophagy play a role in major health problems including cancer and neurodegenerative diseases. Yet, mechanisms controlling autophagic activity are not fully understood. Here, we describe hsa-miR-376b (miR-376b) as a new microRNA (miRNA) regulating autophagy. We showed that miR-376b expression attenuated starvation- and rapamycin-induced autophagy in MCF-7 and Huh-7 cells. We discovered autophagy proteins ATG4C and BECN1 (Beclin 1) as cellular targets of miR-376b. Indeed, upon miRNA overexpression, both mRNA and protein levels of ATG4C and BECN1 were decreased. miR-376b target sequences were present in the 3' UTR of ATG4C and BECN1 mRNAs and introduction of mutations abolished their miR-376b responsiveness. Antagomir-mediated inactivation of the endogenous miR-376b led to an increase in ATG4C and BECN1 levels. Therefore, miR-376b controls autophagy by directly regulating intracellular levels of two key autophagy proteins, ATG4C and BECN1.  相似文献   
26.
27.
Phototherapy is commonly used in the treatment of hyperbilirubinemia in newborns. No serious side effects related to phototherapy have been observed, but concerns regarding its potential to damage DNA have been expressed, based on animal or cell-culture studies. The aim of this study was to investigate, in neonates with hyperbilirubinemia, the possible relation between phototherapy and DNA damage. The study included 33 full-term newborns with non-physiological jaundice and 14 healthy newborns with physiological jaundice as controls. Phototherapy was performed with an array of six fluorescent lamps producing radiation with wavelengths of 480-520 nm at 12 microW/cm(2)/nm. DNA damage in lymphocytes was determined by use of the alkaline comet assay. The DNA damage increased significantly with the duration of phototherapy, as shown by measurements at 24, 48, and 72 h (P<0.001). These findings indicate that phototherapy, widely used in neonatology units, increases DNA damage in newborns. It remains to be seen whether the genotoxic effect observed in the present study can cause any long-term health effect in phototherapy-treated infants in later life.  相似文献   
28.
The discovery of cell-free fetal DNA (cfDNA) circulating in the maternal blood has provided new opportunities for noninvasive prenatal diagnosis (NIPD). However, the extremely low levels of cfDNA within a high background of the maternal DNA in maternal circulation necessitate highly sensitive molecular techniques for its reliable use in NIPD. In this proof of principle study, we evaluated the earliest possible detection of cfDNA in the maternal plasma by a bead-based emulsion PCR technology known as BEAMing (beads, emulsion, amplification, magnetics). Blood samples were collected from in vitro fertilization (IVF) patients at 2 to 6 weeks following embryo transfer (i.e., 4 to 8 week pregnancies) and plasma DNA was extracted. The genomic regions of both X and Y chromosome-specific sequences (AMELX and AMELY) were concurrently amplified in two sequential PCRs; first by conventional PCR then by BEAMing. The positive beads either for AMELX or AMELY gene sequences were counted by a flow cytometer. Our results showed that the pregnancies yielding boys had significantly higher plasma AMELY gene fractions (0.512 ± 0.221) than the ones yielding girls (0.028 ± 0.003) or non-pregnant women (0.020 ± 0.005, P= 0.0059). Here, we clearly demonstrated that the BEAMing technique is capable of reliably detecting cfDNA in the blood circulation of 4-week-pregnant women, which is only two weeks after the embryo transfer. BEAMing technique can also be used to early detect fetal DNA alterations in other pregnancy-associated disorders.  相似文献   
29.
In this study, we aimed to research the effects of class‐I HDACs and glucose on differentiation of pancreatic islet derived mesenchymal stem cells (PI‐MSCs) to beta cells. Beta cell differentiation determined by flow cytometric analysis and gene expression levels of PDX1, PAX4, PAX6, NKX6.1, NGN3, INS2, and GLUT2. As a result the valproic acid, is an inhibitor of class‐I HDACs, caused the highest beta cell differentiation in PI‐MSCs. However, the cells in this group were at early stages of differentiation. Glucose co‐administration to this group carried the differentiation to higher levels, but these newly formed beta cells were not functional. Moreover, reduction in the levels of pluripotency factors that Oct3/4, c‐Myc, and Nanog were parallel to beta cell differentiation. Also, the levels of HDAC1 and acetylated H3/H4 were increased and methylated H3 was decreased by VPA treatment. In addition, we have detected over expression in genes of miR‐18a‐5p, miR‐19b‐5p, miR‐30d‐3p, miR‐124, miR‐146a‐5p, miR‐184, miR‐335, and miR‐433‐5p in parallel to beta cell differentiation. As the conclusion, this study is important for understanding the epigenetic mechanism that controls the beta cell differentation and it suggests new molecules that can be used for diagnosis, and treatment of diabetes. J. Cell. Biochem. 119: 455–467, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
30.
Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82 % similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号