首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   5篇
生物科学   81篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
61.
62.
Cytochromes c are widespread respiratory proteins characterized by the covalent attachment of heme. The formation of c-type cytochromes requires, in all but a few exceptional cases, the formation of two thioether bonds between the two cysteine sulfurs in a -CXXCH- motif in the protein and the vinyl groups of heme. The vinyl groups of the heme are not particularly activated and therefore the addition reaction does not physiologically occur spontaneously in cells. There are several diverse post-translational modification systems for forming these bonds. Here, we describe the complex multiprotein cytochrome c maturation (Ccm) system (in Escherichia coli comprising the proteins CcmABCDEFGH), also called System I, that performs the heme attachment. System I is found in plant mitochondria, archaea and many Gram-negative bacteria; the systems found in other organisms and organelles are described elsewhere in this minireview series.  相似文献   
63.
Viability and pathogenicity of Gram-negative bacteria is linked to the cytochrome c maturation and the oxidative protein folding systems in the periplasm. The transmembrane reductant conductor DsbD is a unique protein which provides the necessary reducing power to both systems through thiol-disulfide exchange reactions in a complex network of protein-protein interactions. The N-terminal domain of DsbD (nDsbD) is the delivery point of the reducing power originating from cytoplasmic thioredoxin to a variety of periplasmic partners. Here we report (1)H, (13)C and (15)N assignments for resonances of nDsbD in its oxidized and reduced states. These assignments provide the starting point for detailed investigations of the interactions of nDsbD with its protein partners.  相似文献   
64.
BACKGROUND: Tetrazolium salts are widely used in biology as indicators of metabolic activity - hence termed vital dyes - but their reduction site is still debated despite decades of intensive research. The prototype, 2,3,5- triphenyl tetrazolium chloride, which was first synthesized a century ago, often generates a single formazan granule at the old pole of Escherichia coli cells after reduction. So far, no explanation for their pole localization has been proposed. METHOD/PRINCIPAL FINDINGS: Here we provide evidence that the granules form in the periplasm of bacterial cells. A source of reducing power is deduced to be thiol groups destined to become disulfides, since deletion of dsbA, coding for thiol-oxidase, enhances the formation of reduced formazan. However, pervasive reduction did not result in a random distribution of formazan aggregates. In filamentous cells, large granules appear at regular intervals of about four normal cell-lengths, consistent with a diffusion-to-capture model. Computer simulations of a minimal biophysical model showed that the pole localization of granules is a spontaneous process, i.e. small granules in a normal size bacterium have lower energy at the poles. This biased their diffusion to the poles. They kept growing there and eventually became fixed. CONCLUSIONS: We observed that formazan granules formed in the periplasm after reduction of tetrazolium, which calls for re-evaluation of previous studies using cell-free systems that liberate inaccessible intracellular reductant and potentially generate artifacts. The localization of formazan granules in E. coli cells can now be understood. In living bacteria, the seeds formed at or migrated to the new pole would become visible only when that new pole already became an old pole, because of the relatively slow growth rate of granules relative to cell division.  相似文献   
65.
A polyphenolic mixture derived from sesame-seed perisperm (SSP) strongly reduced the mutagenicity of hydrogen peroxide (H2O2), sodium azide (NaN3), and benzo[a]pyrene (BaP) in strains TA100 and/or TA98 of Salmonella typhimurium. It exhibited desmutagenic activity against H2O2, BaP in TA98 and/or TA100 and biomutagenic activity (apparently by affecting the DNA-repair system) against NaN3 in strain TA100. According to in vitro experiments the polyphenolic mixture inhibited the activity of the CYP1A1 (EROD) enzyme responsible for the activation of BaP in the Ames’ test, as well as that of the cytosolic enzyme GST.A cytosolic fraction from liver of male Wistar rats treated with either 20% SSP in the food, or 3 mg or 6 mg of polyphenolic mixture/20 g food/day for a time period of 8 weeks reduced the mutagenic potential of BaP in strains TA100 and TA98, with the cytosolic fraction from rats treated with SSP causing the strongest reduction. Furthermore, a microsomal fraction from the 20% SSP-treated rats inhibited the mutagenicity of BaP in strains TA100 (26.3%) and TA98 (23%). In contrast, a microsomal fraction from rats treated with 3 mg of polyphenolic mixture stimulated the mutagenicity of BaP in TA100 but reduced it in TA98, while for the microsomal fraction from rats treated with 6 mg of polyphenolic mixture, these effects on TA100 and TA98 were reversed.  相似文献   
66.
The bacterial protein DsbD transfers reductant from the cytoplasm to the otherwise oxidizing environment of the periplasm. This reducing power is required for several essential pathways, including disulfide bond formation and cytochrome c maturation. DsbD includes a transmembrane domain (tmDsbD) flanked by two globular periplasmic domains (nDsbD/cDsbD); each contains a cysteine pair involved in electron transfer via a disulfide exchange cascade. The final step in the cascade involves reduction of the Cys103-Cys109 disulfide of nDsbD by Cys461 of cDsbD. Here we show that a complex between the globular periplasmic domains is trapped in vivo only when both are linked by tmDsbD. We have found previously (Mavridou, D. A., Stevens, J. M., Ferguson, S. J., & Redfield, C. (2007) J. Mol. Biol. 370 ,643 -658) that the attacking cysteine (Cys461) in isolated cDsbD has a high pKa value (10.5) that makes this thiol relatively unreactive toward the target disulfide in nDsbD. Here we show using NMR that active-site pKa values change significantly when cDsbD forms a complex with nDsbD. This modulation of pKa values is critical for the specificity and function of cDsbD. Uncomplexed cDsbD is a poor nucleophile, allowing it to avoid nonspecific reoxidation; however, in complex with nDsbD, the nucleophilicity of cDsbD increases permitting reductant transfer. The observation of significant changes in active-site pKa values upon complex formation has wider implications for understanding reactivity in thiol:disulfide oxidoreductases.DsbD is a unique protein that transfers reductant across the cytoplasmic membrane to the periplasm in many Gram-negative bacteria (1, 2). Provision of reductant to the periplasm is required because this compartment is otherwise considered to be an oxidizing environment (2). DsbD includes three domains, each containing a pair of cysteine residues that perform a series of disulfide exchange reactions (Fig. 1A). In the first step, the transmembrane domain (tmDsbD) accepts electrons from thioredoxin in the cytoplasm; these are then transferred to the periplasmic C-terminal domain (cDsbD) and finally to the N-terminal domain (nDsbD), which is also located in the periplasm (3-5). nDsbD acts as a junction point for several pathways that require reductant, including the general disulfide isomerase system and the pathway that is thought to reduce the cysteine thiols of apocytochromes in the cytochrome c biogenesis pathway (6). In Gram-positive bacteria, CcdA, an integral membrane protein, and ResA, which has a thioredoxin fold, provide the reductant required for cytochrome c maturation (7).Open in a separate windowFIGURE 1.Schematic representation of DsbD. A, proposed pathway of electron flow from thioredoxin (TrxA) in the cytoplasm, via the three domains of DsbD, to the cytochrome c maturation (Ccm) and disulfide bond isomerization pathways in the periplasm is shown. The crystal structure of nDsbD is from Protein Data Bank code 1L6P (8), cDsbD from Protein Data Bank code 1UC7 (11), and the nDsbD-cDsbD complex from Protein Data Bank code 1VRS (12). The cyan boxes indicate the thrombin cleavage sites introduced into full-length DsbD to allow detection of the nDsbD-cDsbD complex following its formation in vivo. The cysteine residues are shown in yellow. B, schematic representation of the active site of cDsbD in the covalent complex with nDsbD (12). Some active-site residues of cDsbD are indicated in stick representation and the inter-domain disulfide (Cys461-SS-Cys109) is shown in yellow.Structural studies have sought to explain how DsbD functions and interacts with its various partners. The structures of the two soluble periplasmic domains have been determined (Fig. 1A, left). nDsbD has an immunoglobulin-like structure (8, 9) and is the only known thiol:disulfide oxidoreductase with this fold. cDsbD has the more typical thioredoxin fold found in many oxidoreductases; this has the characteristic active-site CXXC motif (10, 11). A covalent complex between single-cysteine variants of each of these two domains was produced in vitro and its x-ray structure solved (12), revealing the interface between the two domains (Fig. 1A, right). Although this mixed disulfide is accepted as a physiological intermediate in the function of DsbD, an in vivo complex between the two soluble domains has not been reported previously (3). Further complexes between nDsbD and its other physiological partners have also been trapped and their structures examined (9, 13). Interestingly, all of the interaction partners of nDsbD are thioredoxin-like proteins; similarities in their folds are congruous with common interaction interfaces (14). However, only cDsbD will reduce nDsbD, whereas nDsbD will reduce several partners. This raises questions about how the direction of reductant flow is maintained and controlled within the series of disulfide-exchange reactions.As part of our structural and mechanistic characterization of DsbD and its domains in solution, we have previously measured by NMR the pKa values of the active-site cysteine pair, Cys461 and Cys464, of cDsbD (numbered according to the full-length Escherichia coli DsbD sequence) (15). An unusually high pKa value of 10.5 was measured for the N-terminal cysteine of the CXXC motif, Cys461, and the pKa value of the second cysteine, Cys464, was significantly higher than the maximum pH value that was studied (pH 12.2). The pKa value of 10.5 is the highest reported for the N-terminal cysteine of the CXXC motif in a thioredoxin fold. The striking consequence of the elevated pKa value is that the active-site cysteine of cDsbD, Cys461, is not strongly nucleophilic, raising critical questions about how this cysteine reacts with the disulfide in nDsbD. It was demonstrated using site-directed mutagenesis that the negatively charged side chains of Asp455 and Glu468, which are located close to the CXXC motif (Fig. 1B), are responsible for the unusually high pKa value of Cys461; mutation of one or both of these residues to Asn and Gln, respectively, resulted in decreases in the pKa value of Cys461 from 10.5 to 9.9 (E468Q), to 9.3 (D455N), and to 8.6 (D455N/E468Q). The pKa values for Asp455 were found to be 5.9 and 6.6 in oxidized and reduced cDsbD; these values are significantly higher than the value of ∼4 for an unperturbed aspartic acid. We postulated that the properties of the amino acid side chains in the immediate environment of the cysteines in cDsbD would change upon complex formation with nDsbD, changing the reactivity of the cysteines and explaining how the reaction between the two domains is initiated (15). Specifically, we proposed that an increase in the pKa value of Asp455 upon complex formation would lead to a decrease in the pKa value of Cys461, thereby making it a better nucleophile. Stirnimann et al. (10) previously presented pKa calculations suggesting an increase in the Asp455 pKa value upon complex formation.The aim of this work has been to determine the molecular basis of the control of the reactivity of the active-site cysteine residues in cDsbD, using NMR to compare the active-site properties of cDsbD alone and in its physiological complex with nDsbD. We demonstrate that the pKa value of Asp455 is elevated by at least 1.1 pH units when cDsbD forms a complex with nDsbD. This modulation of the pKa value is critical for the specificity and function of cDsbD. These in vitro studies are complemented by in vivo studies on complex formation, in which we have trapped the nDsbD-cDsbD complex for the first time. The results of our experiments explain how the intramolecular disulfide cascade within the soluble domains of DsbD functions, and demonstrate the importance of the transmembrane domain in controlling and facilitating complex formation between the soluble domains.  相似文献   
67.
68.
69.
The goal of this study was to quantitatively assess the relationship linking vegetation and airborne pollen. For this, we established six sampling stations in the city of Thessaloniki, Greece. Once every week for 2 years, we recorded airborne pollen in them, at breast height, by use of a portable volumetric sampler. We also made a detailed analysis of the vegetation in each station by counting all existing individuals of the woody species contributing pollen to the air, in five zones of increasing size, from 4 to 40 ha. We found the local vegetation to be the driver of the spatial variation of pollen in the air of the city. Even at very neighbouring stations, only 500 m apart, considerable differences in vegetation composition were expressed in the pollen spectrum. We modelled the pollen concentration of each pollen taxon as a function of the abundance of the woody species corresponding to that taxon by use of a Generalized Linear Model. The relationship was significant for the five most abundantly represented taxa in the pollen spectrum of the city. It is estimated that every additional individual of Cupressaceae, Pinaceae, Platanus, Ulmus and Olea increases pollen in the air by approximately 0.7, 0.2, 2, 6 and 5%, respectively. Whether the relationships detected for the above pollen taxa hold outside the domain for which we have data, as well as under different environmental conditions and/or with different assemblages of species representing them are issues to be explored in the future.  相似文献   
70.
Hydrobioid freshwater gastropods were collected from mainland and insular Greece. Several threatened taxa, such as Graecoanatolica vegorriticola, Pseudamnicola negropontina, Pseudamnicola pieperi, Pseudobithynia eubooensis and Pseudoislamia balcanica, were recorded from new localities. Trichonia trichonica, which has been considered extinct from its type locality for the last twenty eight years, was re-discovered, whereas the presence of Daphniola exigua, G. vegorriticola, Marstoniopsis graeca, P. pieperi and Pseudobithynia trichonis in their type localities was verified. The taxonomic status of P. negropontina and the newly discovered populations of G. vegorriticola was elucidated using COI sequence data. The new data recorded during this survey indicate that the IUCN status of some Greek endemic hydrobioids needs to be updated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号