首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1148篇
  免费   88篇
  国内免费   2篇
生物科学   1238篇
  2023年   12篇
  2022年   9篇
  2021年   44篇
  2020年   27篇
  2019年   27篇
  2018年   34篇
  2017年   39篇
  2016年   48篇
  2015年   56篇
  2014年   60篇
  2013年   104篇
  2012年   87篇
  2011年   83篇
  2010年   57篇
  2009年   36篇
  2008年   57篇
  2007年   40篇
  2006年   48篇
  2005年   50篇
  2004年   37篇
  2003年   28篇
  2002年   21篇
  2001年   17篇
  2000年   11篇
  1999年   18篇
  1998年   10篇
  1997年   9篇
  1995年   5篇
  1994年   7篇
  1992年   7篇
  1990年   7篇
  1989年   8篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   8篇
  1982年   5篇
  1981年   7篇
  1980年   11篇
  1979年   10篇
  1978年   4篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1973年   5篇
  1971年   6篇
  1969年   6篇
  1966年   4篇
排序方式: 共有1238条查询结果,搜索用时 15 毫秒
91.
AbstractNuclear medicine techniques provide potential non-invasive tools for imaging infections and inflammations in the body in a precise way. These techniques are further exploited by the use of radiopharmaceuticals in conjunction with imaging tests such as scintigraphy and positron emission tomography. Improved agents for targeting infection exploit the specific accumulation of radiolabeled compounds to understand the pathophysiologic changes involved in the inflammatory process and correlate them with other chronic illnesses. In the recent past, a wide variety of radiopharmaceuticals have been developed, broadly classified as specific radiopharmaceuticals and nonspecific radiopharmaceuticals. New developments in positron emission (leveraging 18F and 18fluorodeoxyglucose) and heterocyclic/peptide chemistry and radiochemistry are resulting in unique agents with high specific activity. Various approaches to visualizing infection and inflammation are presented in this review, in an integral manner, that give a clear view of the existing radiopharmaceuticals in clinical practice and those under development.  相似文献   
92.
93.
Petroleum products are one of the major sources of energy for industry and daily life. Growth of the petroleum industry and shipping of petroleum products has resulted in the pollution. Populations living in the vicinity of oil refinery waste sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAH) through inhalation, ingestion, and direct contact with contaminated media. PAH have often been found to coexist with environmental pollutants including heavy metals due to similar pollution sources. The levels and distribution patterns of Σ16 PAH (sum of the 16 PAH) and heavy metals (lead, copper, nickel, cobalt, and chromium) were determined in soil and sediment in the vicinity (5 km radius) of an oil refinery in India. Concentrations of Σ16 PAH in the soils and sediments were found to be 60.36 and 241.23 ppm, respectively. Higher amount of PAH in sediments as compared to soil is due to low water solubility of PAH, settled in the bottom of aquatic bodies. The levels of lead, copper, nickel, cobalt, and chromium (total) in soil were 12.52, 13.52, 18.78, 4.84, and 8.29 ppm, while the concentrations of these metals in sediments were 16.38, 47.88, 50.15, 7.07, and 13.25 ppm, respectively. Molecular diagnostics indices of PAH (Ratio of Phenanthrene/Anthracene, Fluranthene/Pyrene) calculated for soil and sediment samples indicate that the oil refinery environment is contaminated with PAH from petrogenic as well as pyrolytic origin and heavy vehicular traffic on the Agra- Delhi National highway. Sixteen PAH priority pollutants were detected in the United States in entire samples collected near oil refinery areas and concentrations of Σ16 PAH in soil was found to be 1.20 times higher than the threshold value for PAH in soil by ICRCL (Inter-Departmental Committee on the Redevelopment of Contaminated Land). This concentration could lead to disastrous consequences for the biotic and abiotic components of the ecosystem and may affect the soil quality, thus impairing plant growth and its bioaccumulation in food chain.  相似文献   
94.
95.
96.
Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.  相似文献   
97.
Salmonella enterica serovar Typhimurium and its surface components were assessed for their inflammatory potential by footpad oedema test using plethysmometer. Inflammation was found to be the highest when outer membrane proteins (OMPs) were used as inflammagen followed by lipid associated protein-lipopolysaccharide complex (LAP-LPS) and lipopolysaccharides (LPS). Inflammation produced by OMPs was found to be comparable to that by carrageenan (a known positive inflammagen). However, injection of L-histidine (an antioxidant) prior to administration of carrageenan or Salmonella enterica serovar Typhimurium inhibited the inflammation, which indicated the involvement of oxidants during inflammatory response. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and nitric oxide (NO) production by peritoneal macrophages from infected mice exhibited a significant increase as compared to those of the immunized mice. In contrast, glutathione production was found to be the maximum in the macrophages taken from OMPs-immunized mice followed by LAP-LPS and LPS alone. The biochemical studies correlated well with histopathological studies of intestinal tissue of animals from various groups. Based upon these parameters, inflammation seems to be modulated by OMPs and LAP-LPS, which may be because of the protein moieties present in the components. Hence, immunization with protein moieties having L-histidine or L-histidine-like structures may suggest an alternative to the potential therapeutic values of anti-inflammatory drugs. Thus the results of this study form the basis for evaluating these antigens (either alone or in combination with polysaccharides) for preventive intervention rather than therapeutic. (Mol Cell Biochem 270: 167–175, 2005)  相似文献   
98.
Carbonic anhydrase in relation to higher plants   总被引:12,自引:0,他引:12  
The review incorporates recent information on carbonic anhydrase (CA, EC: 4.2.1.1) pertaining to types, homology, regulation, purification, in vitro stability, and biological functions with special reference to higher plants. CA, a ubiquitous enzyme in prokaryotes and higher organisms represented by four distinct families, is involved in diverse biological processes, including pH regulation, CO2 transfer, ion exchange, respiration, and photosynthetic CO2 fixation. CA from higher plants traces its origin with prokaryotes and exhibits compartmentalization among their organs, tissues, and cellular organelles commensurate with specific functions. In leaves, CA represents 1–20 % of total soluble protein and abundance next only to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in chloroplast, facilitating CO2 supply to phosphoenol pyruvate carboxylase in C4 and CAM plants and RuBPCO in C3 plants. It confers special significance to CA as an efficient biochemical marker for carbon sequestration and environmental amelioration in the current global warming scenario linked with elevated CO2 concentrations.  相似文献   
99.
In an effort to identify the role of Rab11, a small GTP binding protein, during Drosophila differentiation, phenotypic manifestations associated with different alleles of Rab11 were studied. The phenotypes ranged from eye-defects, bristle abnormalities and sterility to lethality during various developmental stages. In this paper, our focus is targeted on eye defects caused by Rab11 mutations. A novel P-element insertion in the Rab11 locus, Rab11mo, displayed characteristic retinal anomalies, which could be reverted by P-element excision and expression of Rab11+ transgenes. During larval development, Rab11 is widely synthesized in photoreceptor cells and localizes to the rhabdomeres and lamina neuropil in adult eyes. Photoreceptors and associated bristles failed to be formed in homozygous clones generated in Rab11EP(3)3017 eyes. Decreased levels of Rab11 protein and increased cell death in Rab11mo third-instar larval eye-antennal discs suggest that the retinal defects originate during larval development. Our data indicate a requirement for Rab11 in ommatidial differentiation during Drosophila eye development.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号