首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1479933篇
  免费   113992篇
  国内免费   17039篇
医药卫生   1610964篇
  2021年   18551篇
  2020年   13217篇
  2019年   15437篇
  2018年   19681篇
  2017年   15852篇
  2016年   16551篇
  2015年   21664篇
  2014年   28294篇
  2013年   34768篇
  2012年   49148篇
  2011年   53474篇
  2010年   31518篇
  2009年   28016篇
  2008年   45773篇
  2007年   48689篇
  2006年   49399篇
  2005年   48859篇
  2004年   43153篇
  2003年   41803篇
  2002年   40243篇
  2001年   62565篇
  2000年   64474篇
  1999年   55999篇
  1998年   17620篇
  1997年   16191篇
  1996年   15829篇
  1995年   14897篇
  1994年   13845篇
  1992年   42636篇
  1991年   41803篇
  1990年   41013篇
  1989年   39647篇
  1988年   36994篇
  1987年   36073篇
  1986年   34321篇
  1985年   32575篇
  1984年   24168篇
  1983年   20979篇
  1982年   12443篇
  1979年   22726篇
  1978年   15876篇
  1977年   13728篇
  1976年   12959篇
  1975年   14212篇
  1974年   16707篇
  1973年   16079篇
  1972年   15349篇
  1971年   14248篇
  1970年   13218篇
  1969年   12742篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
92.
93.
94.
95.
96.
97.
98.
目的对小儿日间手术模式和专科住院手术模式的卫生经济学进行评价,为小儿腹股沟斜疝手术的优选和决策提供参照依据。方法收集2016年6月至2017年7月间所有在重庆医科大学附属儿童医院治疗且符合纳入标准的单侧腹股沟斜疝患儿的临床资料,其中日间手术患儿324例(日间组),专科住院手术患儿65例(专科组)。比较两种手术模式下的患儿一般资料、治疗指标、容错情况、术后需要留院处理的并发症发生率、复发率、院内的感染等卫生效果指标;比较两种模式的HCAHPS优化星表满意度、住院时间、住院费用等卫生经济学指标。统计分析两种模式的成本-效果:治疗效果权重W、治疗效果指数(EI)、成本-效果比(CER)。结果日间外科组和专科组在性别、区域方面的差异无统计学意义,专科组年龄分布更广。日间组与专科组占用床位时间分别为(23.17±0.49)h和(112.06±19.75)h,差异具有统计学意义(P<0.01);两组的医疗费用分别为(3372±430)元和(6063±2104)元,差异具有统计学意义(P<0.01)。两组麻醉分级ASA比例的差异具有统计学意义,两组术后并发症发生率的差异无统计学意义(P>0.05)。日间组与专科组治疗EI分别为0.98和1.02,CER分别为3305和6184,日间组经济学效益较大。结论日间手术的成本-效果优于专科住院手术模式,患儿满意度和术后复发率与专科住院模式的差异无统计学意义,推荐符合日间手术指征的患儿采用该模式。  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号