首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   11篇
  国内免费   7篇
工业技术   179篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   30篇
  2020年   13篇
  2019年   9篇
  2018年   20篇
  2017年   9篇
  2016年   14篇
  2015年   5篇
  2014年   8篇
  2013年   12篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   2篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  1996年   2篇
排序方式: 共有179条查询结果,搜索用时 203 毫秒
101.
Food safety has become an issue of great interest worldwide. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to control in the dairy industry. The use of lactic acid bacteria (LAB) and their antimicrobial substances against Listeria is promising in food applications. Here, we report the isolation from raw camel milk of LAB displaying antilisterial activity. Two isolates were selected for their secretion of bacteriocin(s) and identified by 16S rRNA sequencing as Enterococcus faecium S6 and R9. The produced bacteriocins were partially purified by ammonium sulfate precipitation and then biochemically characterized. Antimicrobial activity was estimated to be 6,400 and 400 AU (arbitrary units)/mL for E. faecium S6 and R9, respectively. The proteinaceous nature of the bacteriocins was confirmed via enzymatic reactions. Moreover, lipolytic and glycolytic enzymes completely inactivated the antimicrobial effect of the bacteriocins. These bacteriocins were heat-resistant and stable over a wide range of pH (2.0 to 10.0). To confirm its inactivation by lipolytic and glycolytic enzymes, the bacteriocin of E. faecium S6 was further purified by gel filtration, which suggested the existence of carbohydrate and lipid moieties. In addition, enterocin-coding genes were identified by PCR, showing DNA fragments corresponding in size to enterocins A, B, and P for E. faecium S6 and to enterocins B and P for E. faecium R9. In conclusion, these results indicate that partially purified bacteriocins from E. faecium S6 and R9 may be beneficial in controlling Listeria in the dairy industry.  相似文献   
102.
Large-area upstanding silicon nanowires (SiNWs) were synthesized by hot-filament chemical vapor deposition (HFCVD) using silicon monoxide (SiO) powder as Si source under high vacuum (1.2 x 10(-5) Torr). Gold nanoparticles (AuNPs) were employed as catalyst, which were formed on Si substrate by in-situ reduction of gold chloride (AuCl3). The size and distribution of the Au nanoparticles can be easily controlled through chemical reaction conditions. Consequently, the diameter, length and density of SiNWs could be varied in certain range. The SiNWs obtained are single crystalline with growth directions predominantly along [01-1]. Silicon nanowires in large-scale and diameter less than 10 nm can be grown on different Si substrates with this method. Organic inorganic hybrid solar cells based on SiNWs arrays have been demonstrated.  相似文献   
103.
In this study 12 species of Cyperaceae have been studied for quantitative and qualitative observation of pollen grains through Light and scanning electron microscopy. Pollens of 12 species of Cyperaceae from different wetlands of Azad Jammu and Kashmir were collected. Morphological characters of pollen grains were then investigated under the Light and Scanning electron microscope. Two pollen types have been observed apolar and heteropolar. Shape of pollens was prolate (4 spp), sub‐spheroidal (7 spp), and oblate (1 spp). Variation observed in exine sculpturing granular (4 spp), reticulate (1 spp), areolate‐punctate (3 spp), and psilate (2 spp). Polar to equatorial ratio and fertility percentage of the pollens were also studied. Based on these micromorphlogical characters of pollens taxonomic keys have been made for the accurate identification of the members of Cyperaceae. The characteristics studied in present research work are very much valuable taxonomically and phytochemically for the identification of species of family Cyperaceae. Light microscope (LM) and Scanning electron microscope (SEM) were used for pollen observation, which play vital role in the taxonomical identification of species and provide sufficient information for taxonomist.  相似文献   
104.
Gold nanorods (GNRs) are ideal choice in biomedical research due to their amenability of synthesis, tunable plasmonic properties, less toxicity and ease of detection but their diverse biological applications necessitate stable structure. Despite two decades'' efforts made towards reproducible anisotropic structures synthesis, still the kinetic control during GNRs growth has not been achieved. This study is an attempt to apprehend thermodynamic and kinetic parameters for synthesising mono‐disperse, reproducible and highly stable GNRs with desired aspect ratios. Effects of various growth parameters and assay steps on the facile and reproducible synthesis of GNRs are analysed. GNRs'' environmental and biological colloidal stability is studied through UV–Vis spectroscopy based particle instability parameter (PIP < 0.1). The authors hereby report GNRs with tunable longitudinal surface plasmon resonance (682–906 nm) having different aspect ratios (2.5–4.6) that are stable at 28–60°C; however, prolonged high temperature ( > 60°C) and alkaline pH can trigger colloidal instability. GNRs remain stable at higher salt concentration, physiological and slightly acidic pH. GNRs can be stored in 0.001 M cetyltrimethylammonium bromide for 3 months without compromising their stability. PEGylated GNRs are quite stable in cellular media solution (PIP < 0.1). With current optimised growth conditions, no aggregation at physiological pH and stability at high temperatures make GNRs an ideal candidate in biomedical applications.Inspec keywords: gold, nanorods, nanofabrication, nanomedicine, toxicology, thermodynamics, ultraviolet spectra, visible spectra, surface plasmon resonance, pH, cellular biophysicsOther keywords: nanorod synthesis, biomedical applications, tunable plasmonic properties, toxicity, reproducible anisotropic structures synthesis, thermodynamic parameters, kinetic parameters, GNR, biological colloidal stability, UV‐Vis spectroscopy, particle instability parameter, tunable longitudinal surface plasmon resonance, aspect ratios, alkaline pH, physiological pH, slightly acidic pH, cetyltrimethylammonium bromide, cellular media solution, optimised growth conditions, aggregation, wavelength 682 nm to 906 nm, time 3 month, Au  相似文献   
105.
Chondroitin sulphate is a sulphated glycosaminoglycan biopolymer composed over 100 individual sugars. Chondroitin sulphate nanoparticles (NPs) loaded with catechin were prepared by an ionic gelation method using AlCl3 and optimised for polymer and cross‐linking agent concentration, curing time and stirring speed. Zeta potential, particle size, loading efficiency, and release efficiency over 24 h (RE24 %) were evaluated. The surface morphology of NPs was investigated by scanning electron microscopy and their thermal behaviour by differential scanning calorimetric. Antioxidant effect of NPs was determined by chelating activity of iron ions. The cell viability of mesenchymal stem cells was determined by 3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay and the calcification of osteoblasts was studied by Alizarin red staining. The optimised NPs showed particle size of 176 nm, zeta potential of −20.8 mV, loading efficiency of 93.3% and RE24 % of 80.6%. The chatechin loaded chondroitin sulphate NPs showed 70‐fold more antioxidant activity, 3‐fold proliferation effect and higher calcium precipitation in osteoblasts than free catechin.Inspec keywords: nanoparticles, encapsulation, biomedical materials, particle size, nanofabrication, nanomedicine, electrokinetic effects, cellular biophysics, polymer blends, molecular biophysics, molecular configurations, biochemistry, curing, surface morphology, scanning electron microscopy, differential scanning calorimetry, dyes, precipitationOther keywords: in vitro evaluation, cross‐linked chondroitin sulphate nanoparticles, aluminium ions, nanoparticles, green tea flavonoids, sulphated glycosaminoglycan biopolymer, sugars, catechin, ionic gelation method, cross‐linking agent concentration, curing time, size 176 nm, time 24 h, calcium precipitation, 3‐fold proliferation effect, antioxidant activity, chatechin loaded chondroitin sulphate NPs, Alizarin red staining, osteoblasts, calcification, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyl tetrazolium bromide assay, mesenchymal stem cells, cell viability, chelating activity, differential scanning calorimetry, thermal behaviour, scanning electron microscopy, surface morphology, release efficiency, loading efficiency, particle size, zeta potential, stirring speed  相似文献   
106.
MgCo2O4 samples were synthesized by inverse co-precipitation method. The formation of a single-phase spinel structure was confirmed by X-ray diffraction measurements and Fourier-transform infrared spectroscopy. The samples crystallized in a face-centered cubic structure with Fd-3m space group as revealed from the Rietveld refinement of X-ray diffraction data. Magnetic measurements carried out in a broad temperature range of 5–300 K showed antiferromagnetic to paramagnetic phase transition (Neel temperature) observed at 101 K. Magnetic susceptibility data fitted using the Curie Weiss law and effective Bohr magnetic moment (μeff) for Co atoms was determined. Calculated μeff comes out to be 3.05 μB. These results were correlated to the spin states of Co3+ atoms. A small hysteresis in the field-dependent magnetization MH loop taken at 5 K indicates the existence of weak ferromagnetism in this system. The electrical resistivity measurement in the temperature range 77–750 K displayed the semiconducting-like behavior for this system.  相似文献   
107.
Context: Since the end of 2019, the COVID-19 pandemic had a worst impact on world’s economy, healthcare, and education. There are several aspects where the impact of COVID-19 could be visualized. Among these, one aspect is the productivity of researcher, which plays a significant role in the success of an organization. Problem: There are several factors that could be aligned with the researcher’s productivity of each domain and whose analysis through researcher’s feedback could be beneficial for decision makers in terms of their decision making and implementation of mitigation plans for the success of an organization. Method: We perform an empirical study to investigate the substantial impact of COVID-19 on the productivity of researchers by analyzing the relevant factors through their perceptions. Our study aims to find out the impact of COVID-19 on the researcher’s productivity that are working in different fields. In this study, we conduct a questionnaire-based analysis, which included feedback of 152 researchers of certain domains. These researchers are currently involved in different research activities. Subsequently, we perform a statistical analysis to analyze the collected responses and report the findings. Findings: The results indicate the substantial impact of COVID-19 pandemics on the researcher’s productivity in terms of mental disturbance, lack of regular meetings, and field visits for the collection of primary data. Conclusion: Finally, it is concluded that researcher’s daily or weekly meetings with their supervisors and colleagues are necessary to keep them more productive in task completion. These findings would help the decision makers of an organization in the settlement of their plan for the success of an organization.  相似文献   
108.
The organic–inorganic hybrid multilayered composites are prepared using a unique combination of poly[(o‐cresyl glycidyl ether)‐co‐formaldehyde] (CNER), amino modified montmorillonite (NH2‐MMT), and polyethyleneimine (PEI). This tricomponent composite multilayer PEI(CNER/NH2‐MMT/PEI)n deposited via layer ‐ by ‐ layer technique is based upon synergistic combination of covalent and hydrogen bonding. The growth of multilayer was monitored using UV–vis spectroscopy and ellipsometry. When subjected to optical analyses, the prepared multilayered composite films revealed profound optical transmittance ~83%–87%. The surface morphological analysis by atomic force microscopy and scanning electron microscopy revealed uniform arrangement of organic–inorganic components with relative increase in intensity of elements (C, N, O, Si) as confirmed by X‐ray photoelectron spectroscopy studies. The multilayered composites possess 1.99 GPa hardness making them potential candidate for a number of applications where mechanical strength is desired. Moreover, significant resistance against alkaline and organic solvents at minimal deterioration of circa 0.12% has also been observed for the prepared films. The epoxy clay based thin films being robust, scratch resistant, hydrophilic, chemically inert, and mechanically strong are potential candidates for advanced environmental applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46079.  相似文献   
109.
Wheat (Triticum aestivum L.) is the most important staple food crop globally. According to economic survey 2018‐19, agriculture sector of Pakistan grew by 0.85%, with wheat accounting for 8.9% of agriculture and 1.6% of GDP, and its production fell short of the target by 4.9%. Wheat requires beneficial ties to improve its efficiency with the help of modern technology. Nanotechnology modifies conventional agricultural practices as these are stimulating agents for plant growth. Green bimetallic Ag/ZnO alloy nanoparticles (NPs) synthesised from salts reduced by Moringa oleifera and characterised by UV‐visible spectroscopy, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy are studied herein. Different concentrations of urea and Ag/ZnO alloy NPs were applied exogenously to wheat plants (Pakistan‐13 and Galaxy13). A significant effect of 100 mg/L urea and 75 ppm Ag/ZnO alloy NPs was observed on the morphology of wheat, with a maximum increase of 58% plant length, 85% leaf area, 89% plant fresh weight and 76% plant dried weight. In physiological parameters, relative water content and membrane stability index have shown maximum increases of 39% and 77%, while chlorophyll a, b, and total chlorophyll content (TCC) showed maximum increases of 92%, 71%, and 84% respectively. Evidence of the morpho‐physiological responses of urea and green synthesised alloy NPs on wheat varieties are reported on.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号