首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   20篇
工业技术   172篇
  2024年   2篇
  2023年   4篇
  2022年   9篇
  2021年   25篇
  2020年   14篇
  2019年   8篇
  2018年   19篇
  2017年   7篇
  2016年   15篇
  2015年   10篇
  2014年   15篇
  2013年   15篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有172条查询结果,搜索用时 265 毫秒
171.
The present study is focused on a medical problem called stenosed carotid artery. The problem is formulated with the help of a two-phase blood flow model. The non-Newtonian nature of blood is considered that hold power law. Physical quantities were expressed in tensorial form. Analytical and numerical methods are used to solve equations under given boundary conditions. The effects of various parameters on blood flow like stenosis size, flow flux, resistance, haematocrit, pressure drop, etc. were studied and shown through various graphs. Parameter k , which ensures that the fluid is Newtonian or non-Newtonian; its impact on pressure drop; resistance to flow; and flow flux were obtained during the disease and presented through the graph. A relationship between pressure drop and haematocrit was obtained, which was helpful to predict fluctuation in blood flow during stenosis. We have also given a medical use for this model with the help of pathological data. We also analyzed steady and laminar flow in a carotid artery for different heights of stenosis. The study of various physiological parameters has been performed on the basis of blockage percentage and concentration of haematocrit. The nature of the red blood corpuscle (RBC) phase is considered liquid packets in a semi-permeable membrane, which makes this model close to reality.  相似文献   
172.
Hierarchical micro/nanostructures are constructed by micro-scaled objects with nanoarchitectures belonging to an interesting class of crystalline materials that has significant applications in diverse fields. Featured with a large surface-to-volume ratio, facile mass transportation, high stability against aggregation, structurally enhanced adsorption, and catalytical performances, three dimenisional (3D) hierarchical metal oxides have been considered as versatile functional materials for waste-water treatment. Due to the ineffectiveness of traditional water purification protocols for reclamation of water, lately, the use of hierarchical metal oxides has emerged as an appealing platform for the remediation of water pollution owing to their fascinating and tailorable physiochemical properties. The present review highlights various approaches to the tunable synthesis of hierarchical structures along with their surface modification strategies to enhance their efficiencies for the removal of different noxious substances. Besides, their applications for the eradication of organic and inorganic contaminants have been discussed comprehensively with their plausible mechanistic pathways. Finally, overlooked aspects in this field as well as the major roadblocks to the implementation of these metal oxide architectures for large-scale treatment of wastewater are provided here. Moreover, the potential ways to tackle these issues are also presented which may be useful for the transformation of current water treatment technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号