首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   16篇
  国内免费   1篇
工业技术   157篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   15篇
  2012年   8篇
  2011年   7篇
  2010年   11篇
  2009年   9篇
  2008年   14篇
  2007年   5篇
  2006年   2篇
  2005年   8篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
151.
The subject of this paper is a series of experiments conducted on a single-cylinder research engine investigating the influence of molecular structure on the combustion behaviour of fatty acid alcohol ester (biodiesel) molecules under diesel engine conditions. The fuels employed in these experiments comprised various samples of pure individual fatty acid alcohol ester molecules of different structure, as well as several mixtures of such molecules. The latter consisted in biodiesel fuels produced by the transesterification of naturally occurring plant oils or animal fat with a monohydric alcohol. It was observed that the molecular structure of the fuel significantly influenced the formation of NOx and particulate matter and their respective concentration in the exhaust gas. The influence on the formation of NOx in particular, appeared to be exerted first through the effect which the molecular structure had on the auto-ignition delay occurring after the fuel was injected into the combustion chamber, and second through the flame temperature at which the various molecules burned. The emission of particulates on the other hand showed correlation with the number of double bonds in the fuel molecules for the case of larger accumulation mode particles, and with the boiling point of the fuel samples for the case of the smaller, nucleation mode particles. The effect of ignition delay on the exhaust emissions of these pollutants was isolated by adding the ignition promoting molecule 2-ethylhexyl nitrate to some of the fuel samples in closely specified concentrations, so as to equalise the ignition delay for the relevant fuel samples. The removal of the ignition delay as a main influence on the combustion process enabled the observation of the lesser effects of adiabatic flame temperature.  相似文献   
152.
Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to “scientifically” improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis.  相似文献   
153.
This work focuses on fault-tolerant control of a gas phase polyethylene reactor. Initially, a family of candidate control configurations, characterized by different manipulated inputs, is identified. For each control configuration, a bounded nonlinear feedback controller, that enforces asymptotic closed-loop stability in the presence of constraints, is designed, and the constrained stability region associated with it is explicitly characterized using Lyapunov-based tools. Next, a fault-detection filter is designed to detect the occurrence of a fault in the control actuator by observing the deviation of the process states from the expected closed-loop behavior. A switching policy is then derived, on the basis of the stability regions, to orchestrate the activation/deactivation of the constituent control configurations in a way that guarantees closed-loop stability in the event of control system faults. Closed-loop system simulations demonstrate the effectiveness of the fault-tolerant control strategy.  相似文献   
154.
Successfully designing and making effective of use of the next generation of liquid fuels, which will be derived from a range of biomass and fossil sources, requires an understanding of the interactions between structurally similar and dissimilar fuel components when utilised in current engine technology. Interactions between fuel components can influence the release of energy and production of harmful emissions in compression ignition combustion through determination of the autoignition behavior of the fuel. This paper presents experimental studies carried out in a single-cylinder engine supplied with a range of binary mixture fuels to investigate the effect of fuel component interactions on autoignition in direct injection compression ignition. A range of binary mixtures consisting of toluene and n-heptane and also 1-octene and n-octane were tested so as to observe respectively the effect of an aromatic compound and an alkene on n-alkane combustion and emissions. The engine tests were carried out at constant injection timing and they were repeated at constant ignition timing and at constant ignition delay, the latter being achieved through the addition to the various fuels of small quantities of ignition improver (2-ethylhexyl nitrate). Increasing the presence of toluene in the toluene/n-heptane binary mixtures resulted in an increased ignition delay time and generated a distinct two stage ignition process. An increased level of 1-octene in the binary mixtures of 1-octene/n-octane was also found to increase ignition delay, though to a much lesser extent than toluene in the case of the toluene/n-heptane mixtures. Interactions between the fuel components during the ignition delay period appear important in the case of the toluene/n-heptane mixtures but not those of 1-octene/n-octane. At constant injection and constant ignition timings, the combustion phasing and the level of emissions produced by each binary mixture were primarily driven by the ignition delay time. With ignition delay equalised, an effect of adiabatic flame temperature on NOx production was visible.  相似文献   
155.
Economic model predictive control (EMPC) is a control scheme that combines real‐time dynamic economic process optimization with the feedback properties of model predictive control (MPC) by replacing the quadratic cost function with a general economic cost function. Almost all the recent work on EMPC involves cost functions that are time invariant (do not explicitly account for time‐varying process economics). In the present work, we focus on the development of a Lyapunov‐based EMPC (LEMPC) scheme that is formulated with an explicitly time‐varying economic cost function. First, the formulation of the proposed two‐mode LEMPC is given. Second, closed‐loop stability is proven through a theoretical treatment. Last, we demonstrate through extensive closed‐loop simulations of a chemical process that the proposed LEMPC can achieve stability with time‐varying economic cost as well as improve economic performance of the process over a conventional MPC scheme. © 2013 American Institute of Chemical Engineers AIChE J 60: 507–519, 2014  相似文献   
156.
Model-based control of particulate processes   总被引:1,自引:0,他引:1  
In this work, we present an overview of recently developed methods for model-based control of particulate processes. We primarily discuss methods developed in the context of our previous research work and use examples of crystallization, aerosol and thermal spray processes to motivate the development of these methods and illustrate their application. Specifically, we initially discuss control methods for particulate processes which utilize suitable approximations of population balance models to design nonlinear, robust and predictive control systems and demonstrate their application to crystallization and aerosol processes. Finally, we discuss the issues of control problem formulation and controller design for high-velocity oxygen-fuel (HVOF) thermal spray processes and close with few thoughts on unresolved research challenges on control of particulate processes.  相似文献   
157.
The paper presents an experimental investigation of hydrogen-diesel fuel co-combustion carried out on a naturally aspirated, direct injection diesel engine. The engine was supplied with a range of hydrogen-diesel fuel mixture proportions to study the effect of hydrogen addition (aspirated with the intake air) on combustion and exhaust emissions. The tests were performed at fixed diesel injection periods, with hydrogen added to vary the engine load between 0 and 6 bar IMEP. In addition, a novel in–cylinder gas sampling technique was employed to measure species concentrations in the engine cylinder at two in–cylinder locations and at various instants during the combustion process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号