首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   47篇
  国内免费   2篇
工业技术   876篇
  2024年   5篇
  2023年   13篇
  2022年   92篇
  2021年   113篇
  2020年   26篇
  2019年   23篇
  2018年   45篇
  2017年   38篇
  2016年   46篇
  2015年   26篇
  2014年   52篇
  2013年   57篇
  2012年   52篇
  2011年   56篇
  2010年   45篇
  2009年   31篇
  2008年   25篇
  2007年   18篇
  2006年   23篇
  2005年   21篇
  2004年   19篇
  2003年   12篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1995年   3篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有876条查询结果,搜索用时 0 毫秒
131.
Osteoporosis is a skeletal disease associated with excessive bone turnover. Among the compounds with antiresorptive activity, nitrogen-containing bisphosphonates play the most important role in antiosteoporotic treatment. In previous studies, we obtained two aminomethylidenebisphosphonates—benzene-1,4-bis[aminomethylidene(bisphosphonic)] (WG12399C) acid and naphthalene-1,5-bis[aminomethylidene(bisphosphonic)] (WG12592A) acid—which showed a significant antiproliferative activity toward J774E macrophages, a model of osteoclast precursors. The aim of these studies was to evaluate the antiresorptive activity of these aminobisphosphonates in ovariectomized (OVX) Balb/c mice. The influence of WG12399C and WG12592A administration on bone microstructure and bone strength was studied. Intravenous injections of WG12399C and WG12592A bisphosphonates remarkably prevented OVX-induced bone loss; for example, they sustained bone mineral density at control levels and restored other bone parameters such as trabecular separation. This was accompanied by a remarkable reduction in the number of TRAP-positive cells in bone tissue. However, a significant improvement in the quality of bone structure did not correlate with a parallel increase in bone strength. In ex vivo studies, WG12399C and WG12592A remarkably bisphosphonates reduced osteoclastogenesis and partially inhibited the resorptive activity of mature osteoclasts. Our results show interesting biological activity of two aminobisphosphonates, which may be of interest in the context of antiresorptive therapy.  相似文献   
132.
Gamma rays and electrons with kinetic energy up to 10 MeV are routinely used to sterilize biomaterials. To date, the effects of irradiation upon human acellular dermal matrices (hADMs) remain to be fully elucidated. The optimal irradiation dosage remains a critical parameter affecting the final product structure and, by extension, its therapeutic potential. ADM slides were prepared by various digestion methods. The influence of various doses of radiation sterilization using a high-energy electron beam on the structure of collagen, the formation of free radicals and immune responses to non-irradiated (native) and irradiated hADM was investigated. The study of the structure changes was carried out using the following methods: immunohistology, immunoblotting, and electron paramagnetic resonance (EPR) spectroscopy. It was shown that radiation sterilization did not change the architecture and three-dimensional structure of hADM; however, it significantly influenced the degradation of collagen fibers and induced the production of free radicals in a dose-dependent manner. More importantly, the observed effects did not disrupt the therapeutic potential of the new transplants. Therefore, radiation sterilization at a dose of 35kGy can ensure high sterility of the dressing while maintaining its therapeutic potential.  相似文献   
133.
The mechanical and protective properties of parylene N and C coatings (2-20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3-5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants.  相似文献   
134.
Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(?) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(?) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(?), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.  相似文献   
135.
The formation of metal-encapsulated carbon nanomaterials by using metallic catalysts (iron, cobalt, and nickel) has been studied. Moreover, these materials were coated with silica surface modified by (3-Aminopropyl)-trimethoxysilane (APTS). Each intermediate structure was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface morphology of silica-coated carbon nanomaterials was analyzed by scanning electron microscopy (SEM). The modified, APTS–silica surface was additionally characterized by Fourier transform infrared spectroscopy (FT-IR), elemental (EA), and thermogravimetric analysis (TGA).  相似文献   
136.
137.
This paper describes a study of explosively welded titanium-carbon steel S355J2+N plates. Following the welding, plates underwent heat treatment at temperature of 600 °C for 90 min with cooling in furnace to 300 °C and in air to room temperature. The structure of the bonding was examined by using light, scanning electron (SEM) and transmission electron microscopy. The mechanical properties before and after heat treatment were examined applying three-point bending tests with cyclic loads and hardness measurements. Fracture surfaces were investigated using computer tomography and SEM. It has been found that the bonding areas are characterized by a specific chemical composition, microstructure and microhardness. Between the steel and the Ti cladding, a strongly defected transition zone was formed and melted areas with altered chemical composition were observed. It was also demonstrated that the heat treatment commonly applied to welded steel-Ti plates had a significant and negative impact on the microstructure and mechanical properties of the welded plates due to formation of brittle intermetallic phases.  相似文献   
138.
Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt’s-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings’ microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.  相似文献   
139.
An approximate nonlinear analysis of light generation in two-dimensional square- and triangular-lattice photonic crystal lasers including gain saturation effects is presented for the TE modes. This model extends earlier studies which took into account only TM modes. Our approach is based on coupled mode theory. With the help of an energy theorem and a threshold field approximation an approximate formula relating the small signal gain required to obtain a given output power to the structure parameters has been obtained. It has been used to calculate laser characteristics revealing an optimum coupling strength for which laser structure achieves maximum power efficiency.  相似文献   
140.
Superior electrical properties of carbon nanotubes were utilized by the authors in the fabrication of printed resistors. In common applications such as electrodes or sensors, only basic electrical and mechanical properties are investigated, leaving aside other key parameters related to the stability and reliability of particular elements. In this paper we present experimental results on the properties of printed resistive layers. One of the most important issues is their stability under high currents creating excessive thermal stresses. In order to investigate such behavior, a high direct current stress test was performed along with the observation of temperature distribution that allowed us to gain a fundamental insight into the electrical behavior at such operating conditions. These experiments allowed us to observe parametric failure or catastrophic damage that occurred under excessive supply parameters. Electrical parameters of all investigated samples remained stable after applying currents inducing an increase in temperature up to 130 °C and 200 °C. For selected samples, catastrophic failure was observed at the current values inducing temperature above 220 °C and 300 °C but in all cases the failure was related to the damage of PET or alumina substrate. Additional experiments were carried out with short high voltage pulse stresses. Printed resistors filled with nanomaterials sustained similar voltage levels (up to 750 V) without changing their parameters, while commonly used graphite filled polymer resistors changed their resistance value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号