首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79941篇
  免费   6517篇
  国内免费   3536篇
工业技术   89994篇
  2024年   232篇
  2023年   1387篇
  2022年   2027篇
  2021年   3212篇
  2020年   2568篇
  2019年   2135篇
  2018年   2419篇
  2017年   2625篇
  2016年   2337篇
  2015年   3111篇
  2014年   4077篇
  2013年   4699篇
  2012年   5052篇
  2011年   5572篇
  2010年   4900篇
  2009年   4558篇
  2008年   4501篇
  2007年   4162篇
  2006年   4230篇
  2005年   3604篇
  2004年   2565篇
  2003年   2293篇
  2002年   2294篇
  2001年   1965篇
  2000年   1807篇
  1999年   2098篇
  1998年   1738篇
  1997年   1513篇
  1996年   1355篇
  1995年   1130篇
  1994年   951篇
  1993年   695篇
  1992年   576篇
  1991年   375篇
  1990年   274篇
  1989年   231篇
  1988年   189篇
  1987年   122篇
  1986年   94篇
  1985年   63篇
  1984年   46篇
  1983年   34篇
  1982年   42篇
  1981年   27篇
  1980年   23篇
  1979年   17篇
  1978年   5篇
  1977年   5篇
  1975年   5篇
  1947年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
分析得出,棒材表面细小纵裂纹和表面裂口缺陷产生于铸坯加热之前,且与结晶器弯月面保护渣有关。利用Thermo-Calc热力学软件计算15CrMoG钢凝固相变过程,结合亚包晶钢连铸凝固特点综合分析15CrMoG钢棒材表面缺陷的产生原因和产生机理。结果表明:15CrMoG钢在固相线温度附近发生包晶反应L+δ→γ和包晶转变δ→γ,不仅导致初生坯壳生长不均匀,而且加剧P、S元素在凝固前沿的偏析。而初生坯壳不均匀是导致棒材表面缺陷根本原因。棒材表面细小纵裂纹产生于结晶器内坯壳薄弱处,经过二冷和轧制工序在夹杂物和硫偏聚处扩展长大。棒材表面裂口缺陷是初生坯壳不均匀导致结晶器内液面波动大,造成铸坯夹渣所致。通过控制[C]0.16%~0.17%、[S]≤0.005%、保护渣碱度1.2、熔点≥1200℃、粘度≥1.0Pa·s,260 mm×30mm铸坯水量150 m3/h,拉速0.5 m/min等措施,裂纹合格探伤合格率由原45%提高至98%。  相似文献   
72.
设计了一种以STM32F103微控制器为控制核心,基于24位高精度模数转换器的钻孔深度测量仪器。利用弹性波回波测距原理,通过测量出钻孔中钻杆的长度,实现钻孔深度的快速、无损、准确的测量,主要用于井下瓦斯抽放钻孔、探放水钻孔等煤矿通防工作的施工验收。仪器小巧轻便,操作简单,单人即可完成测量工作,节约下井的人力物力,提高生产效率,最长测量长度可达250米,误差不超过1米。  相似文献   
73.
74.
The increased concentration of CO2 due to continuous breathing and no discharge of human beings in the manned closed space, like spacecraft and submarines, can be a threat to health and safety. Effective removal of low concentration CO2 from the manned closed space is essential to meet the requirements of long-term space or deep-sea exploration, which is an international frontier and trend. Ionic liquids (ILs), as a widespread and green solvent, already showed its excellent performance on CO2 capture and absorption, indicating its potential application in low concentration CO2 capture. In this review, we first summarized the current methods and strategies for direct capture from low concentration CO2 in both the atmosphere and manned closed spaces. Then, the multi-scale simulation methods of CO2 capture by ionic liquids are described in detail, including screening ionic liquids by COSMO-RS methods, capture mechanism by density functional theory and molecular dynamics simulation, and absorption process by computational fluid dynamics simulation. Lastly, some typical IL-based green technologies for low concentration CO2 capture, such as functionalized ILs, co-solvent systems with ILs, and supported materials based on ILs, are introduced, and analyzed the subtle possibility in manned closed spaces. Finally, we look forward to the technology and development of low concentration CO2 capture, which can meet the needs of human survival in closed space and proposed that supported materials with ionic liquids have great advantages and infinite possibilities in the vital area.  相似文献   
75.
He  Yong  Li  Zhen  Zhang  Ke-neng  Ye  Wei-min  Chen  Yong-gui 《Mine Water and the Environment》2020,39(1):103-111

Laboratory tests, including compressibility, permeability, and microstructure tests, were conducted on tailings samples using custom-designed test apparatus to investigate the effect of metal contamination (Cu2+) on the hydromechanical behavior of compacted tailings. Infiltrating samples with various dry densities with distilled water or CuSO4 solution at various concentrations showed that the void ratio of compacted tailings decreased with increased dry density. An increase in the metal contaminant concentrations from 0 to 0.1 mol/L increased the compression coefficient of the tailings from 0.14 to 0.84 MPa?1 under a vertical load of 0.01 to 2.0 MPa, while the yield stress of the tailings decreased from 204.3 to 98.7 kPa, respectively. The linear relationship between permeability coefficient (k) and void ratio (e) is described by k?=???6.48?+?17.17e. Microstructure test results showed that the diffusion double layer thinned, and the surface potential decreased, indicating that the contaminant of Cu2+ enhanced the compressibility and permeability of the tailings. The microstructure test results also showed that the amount of fine-grained soil in the copper tailings was significantly less after the hydromechanical test. Therefore, the permeability and compressibility of copper tailings increased. The experimental results are in good agreement with the estimated results.

  相似文献   
76.
Directionally solidified microstructures of Al2O3-Er3Al5O12 eutectic and off-eutectic in situ composite ceramics were explored under abrupt-change pulling rate conditions. Corresponding temperature distributions and interface locations were studied. In eutectic composition, fluctuation of eutectic spacing occurred when the pulling rate increased abruptly. A gradually increase or abrupt increase in eutectic spacing was observed when the pulling rate decreased abruptly. In hypoeutectic and hypereutectic compositions, formation of the primary phases were suppressed when the pulling rate increased abruptly from 10?µm/s to 100?µm/s, while primary phases precipitated when the pulling rate decreased abruptly from 100?µm/s to 10?µm/s. The interface altitude decreased after the pulling rate increased abruptly, but increased after the pulling rate decreased abruptly. The liquid composition restriction (around the eutectic composition) at the eutectic interface plays an important role in the suppression of the primary dendrite and coupled eutectic oxides can be obtained in off-eutectic compositions even under higher solidification rate conditions.  相似文献   
77.
B4C-TiB2-SiC composites were fabricated via hot pressing using ball milled B4C, TiB2, and SiC powder mixtures as the starting materials. The impact of ball milling on the densification behaviors, mechanical properties, and microstructures of the ceramic composites were investigated. The results showed that the refinement of the powder mixtures and the removal of the oxide impurities played an important role in the improvement of densification and properties. Moreover, the formation of the liquid phases during the sintering was deemed beneficial for densification. The typical values of relative density, hardness, bending strength, and fracture toughness of the composites reached 99.20%, 32.84?GPa, 858?MPa and 8.21?MPa?m1/2, respectively. Crack deflection, crack bridging, crack branching, and microcracking were considered to be the potential toughening mechanisms in the composites. Furthermore, numerous nano-sized intergranular/intragranular phases and twin structures were observed in the B4C-TiB2-SiC composite.  相似文献   
78.
Highly (100)-oriented Ce1-x(Y0.2Zr0.8)xOδ (CYZO) films were prepared on biaxially textured NiW substrates by a chemical solution deposition approach using metal inorganic salts as starting materials. It has been found that both the preferential orientation and surface roughness of CYZO films decrease gradually with increasing of the doping percentage of Y3+ and Zr4+ ions. The epitaxial growth relationship of (220)CYZO//(200)NiW and [00?l]CYZO//[001]NiW was demonstrated by XRD texture measurement as well as atomic resolution STEM observation. XRD, Raman and XPS spectra results indicate that Y3+ and Zr4+ ions were indeed introduced into CeO2 lattice to substitute Ce4+ ions and form cubic fluorite CYZO solid solution. Moreover, CeO2 buffer layer can be endowed a strong enough capability to prevent element diffusion through co-doping of yttrium and zirconium, provided that an optimal doping ratio of them is adopted. This will provide a new approach to fabricating strong-barrier single buffer layer for coated conductor.  相似文献   
79.
Molybdenum boride is an ideal hard and wear-resistant material. In this study, a new method is proposed for preparing molybdenum boride, by which Mo first reacts with B4C to generate the mixture of molybdenum boride and C, and then the product is decarburized by molten Ca to generate CaC2. Pure molybdenum boride could be obtained after acid leaching to remove the by-product CaC2. According to the experimental and thermodynamic calculation results, it is concluded that the single-phase MoB could be successfully prepared, while Mo2B, Mo2B5, and MoB4 could not be synthesized by this method. Moreover, it was found that the particle size of finally prepared MoB is determined by particle size of raw Mo powder. The residual carbon content of the product could be decreased to 0.10 wt% after first reaction at 1673 K for 6 hours and then decarburization reaction at 1673 K for 6 hours.  相似文献   
80.
Wax deposit properties are a significant concern in pipeline pigging during waxy crude oil transportation. In the present work, the impacts of flow conditions and oil properties on the wax precipitation characteristics of wax deposits are investigated. A flow loop apparatus was developed to conduct wax deposition experiments using four crude oils collected from different field pipes. The differential scanning calorimetry (DSC) technique was employed to observe the wax precipitation characteristics of crude oil and wax deposit. The results show that the wax content and the wax appearance temperature (WAT) of the deposits increase with shear stress and radial temperature gradient, and decrease with radial wax molecule concentration gradient near the pipe wall. The DSC tests on the wax deposits revealed that the deposit wax content is strongly correlated to the oil wax content. Furthermore, an empirical correlation was developed to predict the wax content and the WAT of the wax deposit. Verification of the empirical correlation using the different oils indicated that the average relative error of the wax content prediction and average absolute error of WAT prediction were 13.2% and 3.6°C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号