首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196724篇
  免费   2372篇
  国内免费   629篇
工业技术   199725篇
  2021年   1245篇
  2019年   1290篇
  2018年   2134篇
  2017年   2118篇
  2016年   2184篇
  2015年   1497篇
  2014年   2625篇
  2013年   7978篇
  2012年   4480篇
  2011年   6123篇
  2010年   4947篇
  2009年   5786篇
  2008年   6152篇
  2007年   6206篇
  2006年   5637篇
  2005年   5310篇
  2004年   5254篇
  2003年   5090篇
  2002年   4903篇
  2001年   5311篇
  2000年   4921篇
  1999年   5443篇
  1998年   15626篇
  1997年   10296篇
  1996年   7719篇
  1995年   5750篇
  1994年   4982篇
  1993年   4985篇
  1992年   3351篇
  1991年   3230篇
  1990年   3198篇
  1989年   2997篇
  1988年   2756篇
  1987年   2202篇
  1986年   2270篇
  1985年   2591篇
  1984年   2297篇
  1983年   2047篇
  1982年   1885篇
  1981年   2023篇
  1980年   1779篇
  1979年   1643篇
  1978年   1644篇
  1977年   2015篇
  1976年   2697篇
  1975年   1416篇
  1974年   1359篇
  1973年   1305篇
  1972年   1114篇
  1971年   941篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
75.
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.  相似文献   
76.
Anthropogenic influences, including climate change, are increasing river temperatures in northern and temperate regions and threatening the thermal habitats of native salmonids. When river temperatures exceed the tolerance levels of brook trout and Atlantic salmon, individuals exhibit behavioural thermoregulation by seeking out cold‐water refugia – often created by tributaries and groundwater discharge. Thermal infrared (TIR) imagery was used to map cold‐water anomalies along a 53 km reach of the Cains River, New Brunswick. Trout and salmon parr did not use all identified thermal anomalies as refugia during higher river temperature periods (>21°C). Most small‐bodied trout (8–30 cm) were observed in 80% of the thermal anomalies sampled. Large‐bodied trout (>35 cm) required a more specific set of physical habitat conditions for suitable refugia, that is, 100% of observed large trout used 30% of the anomalies sampled and required water depths >65 cm within or adjacent to the anomaly. Densities of trout were significantly higher within anomalies compared with areas of ambient river temperature. Salmon parr were less aligned with thermal anomalies at the observed temperatures, that is, 59% were found in 65% of the sampled anomalies; and densities were not significantly different within/ outside anomalies. Salmon parr appeared to aggregate at 27°C, and after several events over 27°C variability in aggregation behaviour was observed – some fish aggregated at 25°C, others did not. We stipulate this is due to variances of thermal fatigue. Habitat suitability curves were developed for velocity, temperature, depth, substrate, and deep water availability to characterize conditions preferred by fish during high‐temperature events. These findings are useful for managers as our climate warms, and can potentially be used as a tool to help conserve and enhance thermal refugia for brook trout and Atlantic salmon in similar systems.  相似文献   
77.
In this study, further analysis of the osmotic drying process was conducted to identify the optimum combination of parameters for drying rectangular alumina-gelatin beams. This study was designed to determine the effect of three variables related to the osmotic drying process (osmotic pressure, molecular weight, and immersion time) on the interaction between the liquid desiccant and the submerged alumina-gelatin samples. The water loss from the alumina-gelatin samples was positively correlated with the molecular weight, osmotic pressure, and immersion time. Up to 40% by weight of the initial water content was removed during the osmotic drying process. The samples also experienced solids gain due to the counterflow of solute from the liquid desiccant. The least amount of solids gain resulted from drying for the shortest immersion time at low osmotic pressure and high molecular weight. Evidence of possible interactions between variables was noted for the sintered density metric. Statistical methods were used to form regression equations for the measured responses (water loss, solids gain, bulk density). A verification experiment was conducted to compare the experimental outcomes to the predicted outcomes. The responses were simultaneously optimized to identify the combination of variable settings required to meet specified goals. In order to maximize water loss, minimize solids gain, and maximize bulk density, the ceramic-gelatin object should be immersed for approximately 60?min in an aqueous solution of 100,000?g/mol poly(ethylene oxide) at an osmotic pressure of 2.50?MPa. These values are valid for the range of parameter settings tested and the sample fabrication and drying methods used.  相似文献   
78.
Vu  Hoa T.  Nguyen  Manh B.  Vu  Tan M.  Le  Giang H.  Pham  Trang T. T.  Nguyen  Trinh Duy  Vu  Tuan A. 《Topics in Catalysis》2020,63(11-14):1046-1055
Topics in Catalysis - Nano Fe-BTC/graphene oxide (GO) composites were successfully synthesized by hydrothermal treatment with a microwave-assisted method. Samples were characterized by X-ray...  相似文献   
79.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   
80.
The molten salt method was used to synthesise the MAX phase compounds Ti2AlC and Ti3AlC2 from elemental powders. Between 900–1000?°C, Ti2AlC was formed alongside ancillary phases TiC and TiAl, which decreased in abundance with increasing synthesis temperature. Changing the stoichiometry and increasing the synthesis temperature to 1300?°C resulted in formation of Ti3AlC2 alongside Ti2AlC and TiC. The type of salt flux used had little effect on the product formation. The reaction pathway for Ti2AlC was determined to be the initial formation of TiC1-x templating on the graphite and titanium aluminides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号