首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2601篇
  免费   41篇
  国内免费   7篇
工业技术   2649篇
  2023年   11篇
  2022年   46篇
  2021年   31篇
  2020年   28篇
  2019年   28篇
  2018年   40篇
  2017年   33篇
  2016年   28篇
  2015年   42篇
  2014年   41篇
  2013年   123篇
  2012年   62篇
  2011年   52篇
  2010年   69篇
  2009年   50篇
  2008年   55篇
  2007年   50篇
  2006年   56篇
  2005年   51篇
  2004年   45篇
  2003年   46篇
  2002年   47篇
  2001年   26篇
  2000年   40篇
  1999年   65篇
  1998年   365篇
  1997年   218篇
  1996年   131篇
  1995年   112篇
  1994年   81篇
  1993年   89篇
  1992年   28篇
  1991年   41篇
  1990年   33篇
  1989年   32篇
  1988年   27篇
  1987年   27篇
  1986年   21篇
  1985年   31篇
  1984年   12篇
  1983年   11篇
  1982年   17篇
  1981年   16篇
  1980年   15篇
  1979年   10篇
  1978年   12篇
  1977年   42篇
  1976年   73篇
  1974年   9篇
  1973年   7篇
排序方式: 共有2649条查询结果,搜索用时 78 毫秒
11.
Most of the previous treatments of semiconductor lasers subject to optical feedback from a phase-conjugate mirror (PCM) have assumed that the PCM responds instantaneously. Furthermore, the mechanism responsible for phase conjugation does not usually enter into the analysis. In this paper, we derive the time-dependent reflectivity of a PCM created through nondegenerate four-wave mixing in a Kerr-type nonlinear medium. The resulting laser dynamics are compared with the case of the ideal PCM, as a function of the external-cavity length, the PCM reflectivity, and the PCM interaction depth. The PCM with a significant interaction depth tends to suppress otherwise chaotic output and produces pulses whose repetition rate is tunable by varying PCM reflectivity. At high feedback levels, it stabilizes the laser output. We use the circle-map formalism to explain our numerical results  相似文献   
12.
13.
14.
The crystal structure of Escherichia coli ornithine transcarbamoylase (OTCase, EC 2.1.3.3) complexed with the bisubstrate analog N-(phosphonacetyl)-L-ornithine (PALO) has been determined at 2.8-A resolution. This research on the structure of a transcarbamoylase catalytic trimer with a substrate analog bound provides new insights into the linkages between substrate binding, protein-protein interactions, and conformational change. The structure was solved by molecular replacement with the Pseudomonas aeruginosa catabolic OTCase catalytic trimer (Villeret, V., Tricot, C., Stalon, V. & Dideberg, O. (1995) Proc. Natl. Acad. Sci. USA 92, 10762-10766; Protein Data Bank reference pdb 1otc) as the model and refined to a crystallographic R value of 21.3%. Each polypeptide chain folds into two domains, a carbamoyl phosphate binding domain and an L-ornithine binding domain. The bound inhibitor interacts with the side chains and/or backbone atoms of Lys-53, Ser-55, Thr-56, Arg-57, Thr-58, Arg-106, His-133, Asn-167, Asp-231, Met-236, Leu-274, Arg-319 as well as Gln-82 and Lys-86 from an adjacent chain. Comparison with the unligated P. aeruginosa catabolic OTCase structure indicates that binding of the substrate analog results in closure of the two domains of each chain. As in E. coli aspartate transcarbamoylase, the 240s loop undergoes the largest conformational change upon substrate binding. The clinical implications for human OTCase deficiency are discussed.  相似文献   
15.
Natural killer cell stimulatory factor (NKSF) or interleukin-12 (IL-12) is a heterodimeric cytokine with pleiomorphic effects on T and NK cells, including induction of lymphokine production, mitogenesis, and enhancement of spontaneous cytotoxic activity. Similarly to IL-2, NKSF/IL-12 enhances NK cell-mediated cytotoxicity within a few hours and independently from induced proliferation. This effect is independent from other induced cytokines, because it is not prevented by antibodies neutralizing interferon (IFN)-alpha, IFN-beta, IFN-gamma, IL-2 or tumor necrosis factor (TNF)-alpha and, unlike the induction of IFN-gamma production by peripheral blood lymphocytes, it does not require HLA class II-positive accessory cells. Enhanced cytotoxicity is accompanied by morphologic changes in NK cells, including a significant increase in the number of cytoplasmic granules. In addition to the previously described ability to enhance the cytotoxic activity of NK cells against tumor-derived target cells, NKSF/IL-12 is also a potent stimulator of cytotoxicity against virus-infected cells, either fibroblasts acutely infected with herpes viruses or T cell lines chronically infected with human immunodeficiency virus-1. NK cell-mediated antibody-dependent cytotoxicity or anti-CD16 antibody-redirected lysis is not significantly enhanced by NKSF/IL-12. However, the ability of resting peripheral blood T cells to mediate anti-CD3 antibody-redirected lysis is enhanced by 18-h incubation with NKSF/IL-12, indicating that this lymphokine can modulate the cytotoxic capability of both NK and T cells.  相似文献   
16.
NM Kaplan 《Canadian Metallurgical Quarterly》1998,351(9098):288; author reply 289-288; author reply 290
  相似文献   
17.
Lubricating oil base stocks differ greatly in their chemical composition and consequently in their physical properties and applications. Influence of waxes and various hydrocarbon type constituents viz saturates and aromatic components on the viscosity and shear stress as a function of temperature in different lube oil base stocks has been studied in the present paper.  相似文献   
18.
19.
Multishell Carrier Transport in Multiwalled Carbon Nanotubes   总被引:1,自引:0,他引:1  
Understanding carrier transport in carbon nanotubes (CNTs) and their networks is important for harnessing CNTs for device applications. Here, we report multishell carrier transport in individual multiwalled CNTs, and films of randomly dispersed multiwalled CNTs, as a function of electric field and temperature. Electrical measurements and first-principles density functional theory calculations indicate transport across CNT shells. Intershell conduction occurs across an energy barrier range of 60-250 meV in individual CNTs, and ~ 60 meV in CNT networks. In both cases, the conductance behavior can be explained based upon field-enhanced carrier injection and defect-enhanced transport, as described by the Poole-Frenkel model.  相似文献   
20.
This paper introduces an analytical model to investigate the energy efficiency of the IEEE 802.11 distributed coordinated function (DCF). This model not only accounts for the number of contending nodes, the contention window, but also the packet size, and the channel condition. Based on this model, we identify the tradeoff in choosing optimum parameters to optimize the energy efficiency of DCF in the error-prone environment. The effects of contention window and packet size on the energy efficiency are examined and compared for both DCF basic scheme and DCF with four-way handshaking. The maximum energy efficiency can be obtained by combining both the optimal packet size and optimal contention window. To validate our analysis, we have done extensive simulations in ns-2, and simulation results seem to match well with the presented analytical results. The Ohio Board of Regents Doctoral Enhancements Funds and the National Science Foundation under Grant CCR 0113361 have supported this work. Xiaodong Wang received his B.S. degree in communication engineering from Beijing Information Technical Institute of China in 1995, and his M.S. degree in electric engineering from Beijing University of Aeronautics and Astronautics of China in 1998. He joined China Telecom in 1998 where he worked on communication protocols for telecommunication. From June 2000 to July 2002, he worked on GSM base station software development at Bell-labs China, Beijing, China. Currently he is a Ph.D. student in Computer Engineering at University of Cincinnati. His research activities include wireless MAC protocols, energy saving for wireless sensor networks. He is a student member of the IEEE. Jun Yin received the BS degree in automatic control from Dalian Railway Institute of China in 1997, and the MS degree in flight control from Beijing University of Aeronautics and Astronautics of China in 2001. Since 2001 she has been a Ph.D. student in the OBR Research Center for Distributed and Mobile Computing at the University of Cincinnati. Her research interests include performance evaluation of 802.11 MAC protocol, wireless ad hoc networks and sensor networks. She is a student member of the IEEE. Dharma P.Agrawal IEEE Fellow, 1987; ACM Fellow, 1998; AAAS Fellow, 2003 Dr. Agrawal is the Ohio Board of Regents Distinguished Professor of Computer Science and Computer Engineering in the department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, OH. He has been a faculty member at Wayne State University, (1977–1982) and North Carolina State University (1982–1998). He has been a consultant to the General Dynamics Land Systems Division, Battelle, Inc., and the U. S. Army. He has held visiting appointment at AIRMICS, Atlanta, GA, and the AT&T Advanced Communications Laboratory, Whippany, NJ. He has published a number of papers in the areas of Parallel System Architecture, Multi computer Networks, Routing Techniques, Parallelism Detection and Scheduling Techniques, Reliability of Real-Time Distributed Systems, Modeling of C-MOS Circuits, and Computer Arithmetic. His recent research interest includes energy efficient routing, information retrieval, and secured communication in ad hoc and sensor networks, effective handoff handling and multicasting in integrated wireless networks, interference analysis in piconets and routing in scatternet, use of smart directional antennas (multibeam) for enhanced QoS, Scheduling of periodic real-time applications and automatic load balancing in heterogeneous workstation environment. He has four approved patents and three patent filings in the area of wireless cellular networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号