首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   20篇
工业技术   142篇
  2023年   5篇
  2022年   4篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   9篇
  2016年   10篇
  2015年   5篇
  2014年   11篇
  2013年   12篇
  2012年   5篇
  2011年   11篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
121.
This study presents an investigation of transient local entropy generation rate in pulsating turbulent flow through an externally heated pipe. The flow inlet to the pipe pulsates at a constant period and amplitude, only the velocity oscillates. The simulations are extended to include different pulsating flow cases (sinusoidal flow, step flow, and saw-down flow) and for varying periods. The flow and temperature fields are computed numerically with the help of the Fluent computational fluid dynamics (CFD) code, and a computer program developed by us by using the results of the calculations performed for the flow and temperature fields. In all investigated cases, the irreversibility due to the heat transfer dominates. With the increase of flow period, the highest levels of the total entropy generation rates increase logarithmically in the case of sinusoidal and saw-down flow cases whereas they are almost constant and the highest total local entropy is also generated in the step case flow. The Merit number oscillates periodically in the pulsating flow cases along the flow time. The results of this study indicate that flow pulsation has an adverse effect on the ratio of the useful energy transfer rate to the irreversibility rate.  相似文献   
122.
The uniform and nonporous poly(glycidyl methacrylate) (poly(GMA)) latex particles, 1.7 μm in size, were first tried as a support in enzyme immobilization. For this purpose, α‐chymotrypsin (CT) was selected as the model enzyme. The low particle size and nonporous character of the selected support allowed to carry out the enzyme–subtrate interaction on a sufficiently large surface area (3.36 m2/g) and in the absence of intraparticular diffusion limitations. This property is particularly important when the immobilized CT is used for the substrates with high molecular weights (i.e., proteins). The latex particles were synthesized by dispersion polymerization of GMA. The reactive character of poly(GMA) allowed the direct attachment of primary amine groups onto the particles. Confocal laser scanning microscopy (CLSM) showed that primary amine groups were preferentially located on the particle's surface. Hence, the selected enzyme, CT was immobilized on the surface of nonporous particles via glutaraldehyde activation. For CT‐immobilized poly(GMA) particles, the maximum activity (rm) and Michealis constant (Km) were found to be 17.2 μmol/mg CT min and 121.6 μm, respectively. No significant loss was observed in the activity of immobilized CT, during the course of experiments. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 818–824, 2006  相似文献   
123.
124.
Black carrot concentrate has gained increasing interest in recent years as a natural colourant due to its substantial content of bioactive compounds, especially anthocyanins. Black carrot concentrate production includes several steps, some of which are milling, mashing, pressing, pasteurisation and concentration. In this study, every step of black carrot concentrate processing was investigated to elucidate both the quantitative and qualitative changes in antioxidative compounds using spectrophotometric, HPLC‐based and LC‐QTOF‐MS‐based analyses. The results obtained indicated that processing the raw black carrot material into its concentrate led to an overall reduction of 70%, 73% and 44% in total phenolic, total flavonoid and total monomeric anthocyanin contents on a dry weight basis, respectively. Moreover, concentrate processing resulted in 67% and 71% decreases in total antioxidant capacity, determined using DPPH and CUPRAC methods, respectively, on dry weight basis. Untargeted LC‐MS‐based metabolomics analysis enabled the identification of ten phenolic components including seven anthocyanins and three phenolic acids. HPLC‐based quantification of individual anthocyanins revealed cyanidin‐3‐xylosyl (feruloylglucosyl)galactoside as the major anthocyanin component.  相似文献   
125.
Simultaneous glycolysis and neutral hydrolysis of waste polyethylene terephthalate (PET) has been carried out at 170 and 190 °C with constant amount of ethylene glycol (EG) and increasing amounts of water, in the presence of xylene. The organic solvent made it possible to employ very low amounts of reactants as well as application of lower temperatures and pressures in contrast with previous methods, yielding intermediates suitable for PET or other polymeric materials. These intermediates were characterized by acid value (AV), hydroxyl value (HV) determinations as well as by differential scanning calorimetry (DSC). A water soluble crystallizable fraction with high purity, consisting of mono 2-hydroxy ethyl ester of terephthalic acid (monohydroxyethyl terephthalate, MHT) monomer has been obtained with significant yield and its polymerization tendency has been compared with that of bis(2-hydroxy ethyl) terephthalate (BHET) by application of multiple heating/cooling cycles in DSC.  相似文献   
126.
The purpose of this study is to reduce the thermally induced stress in a solid disk heated by moving ring heat flux (radially periodic expanding and contracting) and cooled by means of coolant following this heat flux (the subsequent cooling process). It was assumed that the ring heat flux per unit area at the each ring surface was uniform. The applied heat transfer rate, Q, regularly increases from 3.14 to 311 W and then decreases to 3.14 W in one period depending on the area of heated ring. The FLUENT 6.1 program was chosen as computer code to calculate these numerical solutions. Furthermore, a computer program, applying the SIMPSON integration method to the obtained temperature distributions from the heat transfer calculations, has been developed to calculate numerically the governing thermal stress distributions. The calculations were performed individually for a wide range of coolant (liquid) heat transfer coefficient, from 1000 to 10,000 W/m2 K stepped by 1000 W/m2 K and for the various ring heat flux expansion and contraction speeds, from 0.0005 to 0.001 m/s stepped by 0.0001 m/s, under transient conditions. The thermal stress differences in the axial direction are quite high around the heated ring and the coolant rings with respect to the other rings due to the non-uniform heating at the surface. However, the levels of the thermal stress in the disk are reduced (from 6 to 31% depending on coolant heat transfer coefficient), by means of the subsequent cooling process.  相似文献   
127.
This study presents the transmutations of both the minor actinides (MAs: 237Np, 241Am, 243Am and 244Cm) and the long-lived fission products (LLFPs: 99Tc, 129I and 135Cs), discharged from high burn-up PWR-MOX spent fuel, in a fusion-driven transmuter (FDT) and the effects of the MA and LLFP volume fractions on their transmutations. The blanket configuration of the FDT is improved by analyzing various sample blanket design combinations with different radial thicknesses. Two different transmutation zones (TZMA and TZFP which contain the MA and LLFP nuclides, respectively) are located separately from each other. The volume fractions of the MA and the LLFP are raised from 10 to 20% stepped by 2% and from 10 to 80% stepped by 5%, respectively. The calculations are performed to estimate neutronic parameters and transmutation characteristics per D–T fusion neutron. The conversion ratios (CRs) for the whole of all MAs are about 65–70%. The transmutation rates of the LLFP nuclides increase linearly with the increase of volume fractions of the MA, and the 99Tc nuclide among them has the highest transmutation rate. The variations of their transmutation rate per unit volume in the radial direction are quasi-concave parabolic.  相似文献   
128.
129.
This article aims to study the effect of the sizing materials type on the mechanical, thermal, and morphological properties of carbon fiber (CF)‐reinforced polyamide 6,6 (PA 6,6) composites. For this purpose, unsized CF and sized CFs were used. Thermogravimetric analysis was performed, and it has been found that certain amounts of polyurethane (PU) and PA sizing agents decompose during processing. The effects of sizing agent type on the mechanical and thermomechanical properties of all the composites were investigated using tensile, Izod impact strength test, and dynamic mechanical analysis. Tensile strength values of sized CF‐reinforced composites were higher than that of unsized CF‐reinforced composites. PA and polyurethane sized CF‐reinforced composites exhibited the highest impact strength values among the other sized CF‐reinforced composites. PU and PA sized CF‐reinforced composites denoted higher storage modulus and better interfacial adhesion values among the other sizing materials. Scanning electron microscope studies indicated that CFs which were sized with PU and PA have better interfacial bonding with PA 6,6 matrix among the sized CFs. All the results confirmed that PA and PU were suitable for CF's sizing materials to be used for PA 6,6 matrix. POLYM. COMPOS., 34:1583–1590, 2013. © 2013 Society of Plastics Engineers  相似文献   
130.
The aim of this study was to determine the effect of the maleic anhydride grafted polypropylene (PP-g-MAH) on the properties of short carbon fiber (CF) reinforced polypropylene (PP) composites. The composites were prepared by melt blending and injection molding techniques at different percentages of CF. Tensile tests, hardness, differential scanning calorimeter (DSC) and scanning electron microscopy (SEM) were performed to characterize the physical and morphological properties of the prepared composites. It was observed from SEM photographs that modification with PP-g-MAH improved the interfacial adhesion between the carbon fibers and PP matrix. The ultimate tensile strength, hardness and modulus values of modified PP composites were higher compared to the values of CF reinforced PP composites. Melting temperature of all composites was not changed significantly with increasing CF content; however degree of crystallinity values were decreased with the increasing CF content level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号