首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492786篇
  免费   32125篇
  国内免费   9478篇
工业技术   1534389篇
  2021年   17941篇
  2020年   13738篇
  2019年   16228篇
  2018年   16146篇
  2017年   15570篇
  2016年   22229篇
  2015年   19642篇
  2014年   31740篇
  2013年   91251篇
  2012年   37230篇
  2011年   48685篇
  2010年   44487篇
  2009年   53060篇
  2008年   45321篇
  2007年   41951篇
  2006年   46395篇
  2005年   40252篇
  2004年   41741篇
  2003年   41587篇
  2002年   40703篇
  2001年   37302篇
  2000年   36164篇
  1999年   35138篇
  1998年   39135篇
  1997年   35789篇
  1996年   33709篇
  1995年   29984篇
  1994年   28228篇
  1993年   27863篇
  1992年   25498篇
  1991年   22493篇
  1990年   22924篇
  1989年   21761篇
  1988年   20163篇
  1987年   18530篇
  1986年   17891篇
  1985年   21175篇
  1984年   21623篇
  1983年   19580篇
  1982年   18771篇
  1981年   18807篇
  1980年   17403篇
  1979年   17982篇
  1978年   17279篇
  1977年   16554篇
  1976年   16775篇
  1975年   15564篇
  1974年   15120篇
  1973年   15195篇
  1972年   12741篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Sun  Xiuping  Wang  Lu  Li  Chuanchuan  Wang  Debao  Sikandar  Iqbal  Man  Ruxia  Tian  Fang  Qian  Yitai  Xu  Liqiang 《Nano Research》2021,14(12):4696-4703

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives for next-generation battery systems, which have promising application potential due to their earth abundance of potassium and sodium, high capacity and suitable working potential, however, the design and application of bi-functional high-performance anode still remain a great challenge up to date. Bismuth sulfide is suitable as anode owing to its unique laminar structure with relatively large interlayer distance to accommodate larger radius ions, high theoretical capacity and high volumetric capacity etc. In this study, dandelion-like Bi2S3/rGO hierarchical microspheres as anode material for PIBs displayed reversible capacity, and 206.91 mAh·g−1 could be remained after 1,200 cycles at a current density of 100 mA·g−1. When applied as anode materials for SIBs, 300 mAh·g−1 could be retained after 300 cycles at 2 A·g−1 and its initial Coulombic efficiency is as high as 97.43%. Even at high current density of 10 A·g−1, 120.3 mAh·g−1 could be preserved after 3,400 cycles. The Na3V2(PO4)3@rGO//Bi2S3/rGO sodium ion full cells were successfully assembled which displays stable performance after 60 cycles at 100 mA·g−1. The above results demonstrate that Bi2S3/rGO has application potential as high performance bi-functional anode for PIBs and SIBs.

  相似文献   
992.
Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon.  相似文献   
993.
994.
Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives: (1) knowing the bulging behavior of a Cu clad tri-layered steel sheet as a function of forming conditions, and (2) analyzing the bending effect on bulging in an attempt to identify the associated mechanism. A series of ISF tests and bending analysis are performed to realize these objectives. From the cause-effect analysis, it is found that bulge formation in the layered sheet is sensitive to forming conditions in a way that bulging can be minimized utilizing annealed material and performing ISF with larger tool diameter and step size. The bending under tension analysis reveals that the formation of bulge is an outgrowth of bending moment that the forming tool applies on the sheet during ISF. Furthermore, the magnitude of bending moment depending upon the forming conditions varies from 0.046 to 10.24 N·m/m and causes a corresponding change in the mean bulge height from 0.07 to 0.91 mm. The bending moment governs bulging in layered sheet through a linear law. These findings lead to a conclusion that the bulge defect can be overcome by controlling the bending moment and the formula proposed can be helpful in this regards.  相似文献   
995.
996.
吴世超  孙体昌  杨慧芬 《金属矿山》2020,48(11):109-114
以国外某高磷鲕状赤铁矿为研究对象进行脱磷研究,该高磷矿铁品位为55.81%,磷含量为0.72%,铁矿物主要为磁铁矿和赤铁矿,48.61%的磷存在于磷酸盐中,47.22%的磷分布于铁矿物中。研究了脱磷剂用量、秸秆炭用量、还原温度以及还原时间对粉末还原铁指标的影响。结果表明:无脱磷剂碳酸钙时,无法获得合格的指标;在碳酸钙用量为25%,秸秆炭用量为12.5%,还原温度1 200 ℃,还原时间为75 min,还原产品两段磨矿两段磁选的条件下,可获得铁品位、铁回收率以及磷含量分别为94.27%、87.34%以及0.077%的粉末还原铁,该产品可作为电炉炼钢的优质原料。不加添加剂时,部分含磷矿物被还原成单质磷进入到金属铁中,故粉末还原铁磷含量较高,当碳酸钙用量为25%时,含磷矿物的还原受到抑制而保留在脉石相中,可实现降磷目的,而还原时间过长时,磷仍在脉石相中,铁颗粒将部分含磷矿物包裹,磨矿难以分离,导致磷含量升高。  相似文献   
997.
We used perceptual and oculomotor measures to understand the negative impacts of low (phantom array) and high (motion blur) duty cycles with a high‐speed, AR‐likehead‐mounted display prototype. We observed large intersubject variability for the detection of phantom array artifacts but a highly consistent and systematic effect on saccadic eye movement targeting during low duty cycle presentations. This adverse effect on saccade endpoints was also related to an increased error rate in a perceptual discrimination task, showing a direct effect of display duty cycle on the perceptual quality. For high duty cycles, the probability of detecting motion blur increased during head movements, and this effect was elevated at lower refresh rates. We did not find an impact of the temporal display characteristics on compensatory eye movements during head motion (e.g., VOR). Together, our results allow us to quantify the tradeoff of different negative spatiotemporal impacts of user movements and make subsequent recommendations for optimized temporal HMD parameters.  相似文献   
998.
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism – yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.  相似文献   
999.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
1000.
This study aims to evaluate the tribological behaviour of 3Y-TZP/Ta (20 vol%) ceramic-metal composites and 3Y-TZP monolithic ceramic prepared by spark plasma sintering (SPS) against ultrahigh molecular weight polyethylene (UHMWPE). According to the results of pin (UHMWPE)-on-flat wear test under dry conditions, the UHMWPE – 3Y-TZP/Ta system exhibited lower volume loss and friction coefficient than the UHMWPE – monolithic ceramic combination due to the presence of an autolubricating layer that provides sufficient lubrication for reducing the friction. Owing to the lubrication of the liquid media, under wet conditions obtained using simulated body fluid (SBF), similar behaviour is observed in both cases. Additionally, the ceramic and biocomposite materials were subjected to a low temperature degradation (LTD) process (often referred to as “ageing”) to evaluate the changes in the tribological behaviour after this treatment. In this particular case, the wear properties of the UHMWPE-biocomposite system were found to be less influenced by ageing in contrast to the case of the UHMWPE-zirconia monolithic material. In addition to their exceptional mechanical performance, 3Y-TZP/Ta composites also showed high resistance to low temperature degradation and good tribological properties, making them promising candidates for biomedical applications, especially for orthopaedic implants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号