首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57483篇
  免费   16269篇
  国内免费   911篇
工业技术   74663篇
  2024年   67篇
  2023年   424篇
  2022年   621篇
  2021年   1256篇
  2020年   2164篇
  2019年   3716篇
  2018年   3778篇
  2017年   4049篇
  2016年   4520篇
  2015年   4734篇
  2014年   4825篇
  2013年   6168篇
  2012年   4042篇
  2011年   3817篇
  2010年   3914篇
  2009年   3758篇
  2008年   3180篇
  2007年   2839篇
  2006年   2573篇
  2005年   2162篇
  2004年   1937篇
  2003年   1904篇
  2002年   1812篇
  2001年   1561篇
  2000年   1513篇
  1999年   902篇
  1998年   485篇
  1997年   382篇
  1996年   335篇
  1995年   266篇
  1994年   220篇
  1993年   146篇
  1992年   117篇
  1991年   84篇
  1990年   83篇
  1989年   64篇
  1988年   42篇
  1987年   38篇
  1986年   38篇
  1985年   25篇
  1984年   15篇
  1983年   11篇
  1982年   8篇
  1981年   15篇
  1980年   11篇
  1979年   5篇
  1978年   7篇
  1977年   7篇
  1976年   10篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
71.
In the context of industrial buildings and power plants, electrical installations and cable trays represent a main fuel load and a potential initial fire source due to possible short circuits or comparable malfunction. Furthermore, a fire can spread from one tray to additional trays mounted above and/or horizontally on one tray. Because of the high significance of cable fires, several research projects have been carried out, investigating the fire behaviour of cables from small‐scale tests, eg, the cone calorimeter, up to large‐scale tests, analysing complete cable tray constructions. The goal of the work presented in this paper is the extension of the knowledge regarding the influence of geometrical parameters like the packing density and tray distance on the burning behaviour and fire spread of cable tray installations. The results are considered, together with test results from the literature, to quantify the main physical parameters describing the burning behaviour. In a next step, the general applicability of these parameters as input data for the parametrization of the source term of numerical simulations is shown. The test results show that the burning behaviour and the fire spreading highly depend on the cable arrangement of the cables on the cable tray, in combination with other boundary conditions. By applying the results as input for a fire simulation, the mass loss rate is considered appropriately.  相似文献   
72.
Intelligent Service Robotics - A robust control designed for multiple degrees-of-freedom (DOF) robot manipulators performing complex tasks requiring frequent physical interaction with unknown...  相似文献   
73.
Podocyte injury inevitably results in leakage of proteins from the glomerular filter and is vital in the pathogenesis of diabetic nephropathy (DN). The underlying mechanisms of podocyte injury facilitate finding of new therapeutic targets for DN treatment and prevention. Tangeretin is an O-polymethoxylated flavone present in citrus peels with anti-inflammatory and antioxidant properties. This study investigated the renoprotective effects of tangeretin on epithelial-to-mesenchymal transition-mediated podocyte injury and fibrosis through oxidative stress and hypoxia caused by hyperglycemia. Mouse podocytes were incubated in media containing 33 mM glucose in the absence and presence of 1–20 μM tangeretin for up to 6 days. The in vivo animal model employed db/db mice orally administrated with 10 mg/kg tangeretin for 8 weeks. Non-toxic tangeretin inhibited glucose-induced expression of the mesenchymal markers of N-cadherin and α-smooth muscle actin in podocytes. However, the reduced induction of the epithelial markers of E-cadherin and P-cadherin was restored by tangeretin in diabetic podocytes. Further, tangeretin enhanced the expression of the podocyte slit diaphragm proteins of nephrin and podocin down-regulated by glucose stimulation. The transmission electron microscopic images revealed that foot process effacement and loss of podocytes occurred in diabetic mouse glomeruli. However, oral administration of 10 mg/kg tangeretin reduced urine albumin excretion and improved foot process effacement of diabetic podocytes through inhibiting loss of slit junction and adherenes junction proteins. Glucose enhanced ROS production and HIF-1α induction in podocytes, leading to induction of oxidative stress and hypoxia. Similarly, in diabetic glomeruli reactive oxygen species (ROS) production and HIF-1α induction were observed. Furthermore, hypoxia-evoking cobalt chloride induced epithelial-to-mesenchymal transition (EMT) process and loss of slit diaphragm proteins and junction proteins in podocytes, which was inhibited by treating submicromolar tangeretin. Collectively, these results demonstrate that tangeretin inhibited podocyte injury and fibrosis through blocking podocyte EMT caused by glucose-induced oxidative stress and hypoxia.  相似文献   
74.
75.
76.
This paper considers a novel distributed iterative learning consensus control algorithm based on neural networks for the control of heterogeneous nonlinear multiagent systems. The system's unknown nonlinear function is approximated by suitable neural networks; the approximation error is countered by a robust term in the control. Two types of control algorithms, both of which utilize distributed learning laws, are provided to achieve consensus. In the provided control algorithms, the desired reference is considered to be an unknown factor and then estimated using the associated learning laws. The consensus convergence is proven by the composite energy function method. A numerical simulation is ultimately presented to demonstrate the efficacy of the proposed control schemes.  相似文献   
77.
78.
79.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
80.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号