首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3323篇
  免费   121篇
  国内免费   18篇
工业技术   3462篇
  2023年   17篇
  2022年   21篇
  2021年   63篇
  2020年   53篇
  2019年   47篇
  2018年   73篇
  2017年   56篇
  2016年   74篇
  2015年   53篇
  2014年   72篇
  2013年   191篇
  2012年   113篇
  2011年   153篇
  2010年   140篇
  2009年   160篇
  2008年   132篇
  2007年   128篇
  2006年   107篇
  2005年   92篇
  2004年   109篇
  2003年   88篇
  2002年   88篇
  2001年   77篇
  2000年   67篇
  1999年   77篇
  1998年   124篇
  1997年   78篇
  1996年   70篇
  1995年   53篇
  1994年   60篇
  1993年   67篇
  1992年   61篇
  1991年   51篇
  1990年   48篇
  1989年   57篇
  1988年   45篇
  1987年   32篇
  1986年   37篇
  1985年   42篇
  1984年   43篇
  1983年   40篇
  1982年   24篇
  1981年   25篇
  1980年   30篇
  1979年   15篇
  1978年   21篇
  1977年   27篇
  1976年   32篇
  1974年   19篇
  1973年   24篇
排序方式: 共有3462条查询结果,搜索用时 15 毫秒
61.
A new “fuzzy wire” model of catalytic wires and gauzes is presented which is in good agreement with observed ignition, extinction, and flickering phenomena. The model predicts both simple harmonic oscillations as well as a wide variety of nonperiodic chaotic oscillations. Quantitative comparisons with data for butane oxidation and cyclohexene oxidation are quite good; however, the very long period oscillations observed for H2 and CO oxidation are not predicted by the simplest forms of the model.  相似文献   
62.
通过测量Na2 O -TeO2 系统玻璃转化区的热容曲线 ,对该系统不同成分玻璃形成液体的热力学和动力学脆性进行研究。结果表明 :该系统玻璃形成液体从热力学和动力学综合看脆性程度介于强弱之间 ,为中性偏脆性。随着氧化钠含量的升高 ,玻璃形成液体的脆性增强。用Kissinger方程和Ritland -Bartanev方程 ,得到的在玻璃转变区的结构松弛激活能十分接近。对该系统玻璃形成液体脆性参数的计算也得到该玻璃形成液体脆性分类的相同结果  相似文献   
63.
64.
The development of a detailed model describing particle growth in olefin copolymerization systems is presented. The Multigrain Model considers in detail monomer sorption, mass transfer, and changing porosity within the growing particle, as well as heat and mass transfer across the external film of the particle. The model predicts catalyst performance, including polymerization rates and particle morphology, in different reactor media without parameter adjustment. Internal void fractions are calculated through an examination of the relative growth rates within the growing particle. The model is used to examine the effects of mass transfer limitations, prepolymerization, and nonuniform metal distribution on the particle growth process. Model predictions of morphology show the same trends as observed experimentally.  相似文献   
65.
After 104 h of continuous aqueous electrolysis with K2CO3 as the electrolyte, highly stable novel inorganic hydride compounds such as KH KHCO3 and KH were isolated and identified by time of flight secondary ion mass spectroscopy (ToF-SIMS). The existence of novel hydride ions was determined using X-ray photoelectron spectroscopy (XPS) and solid state magic-angle spinning proton nuclear magnetic resonance spectroscopy (1H MAS NMR). A novel hydride ion formed by plasma electrolysis of a K2CO3, Rb2CO3, or Cs2CO3 electrolyte was also observed by high resolution visible spectroscopy at 407.0 nm corresponding to its predicted binding energy of 3.05 eV.  相似文献   
66.
In this article, modification of carbon fiber surface by carbon based nanofillers (multi-walled carbon nanotubes [CNT], carbon nanofibers, and multi-layered graphene) has been achieved by electrophoretic deposition technique to improve its interfacial bonding with epoxy matrix, with a target to improve the mechanical performance of carbon fiber reinforced polymer composites. Flexural and short beam shear properties of the composites were studied at extreme temperature conditions; in-situ cryo, room and elevated temperature (−196, 30, and 120°C respectively). Laminate reinforced with CNT grafted carbon fibers exhibited highest delamination resistance with maximum improvement in flexural strength as well as in inter-laminar shear strength (ILSS) among all the carbon fiber reinforced epoxy (CE) composites at all in-situ temperatures. CNT modified CE composite showed increment of 9% in flexural strength and 17.43% in ILSS when compared to that of unmodified CE composite at room temperature (30°C). Thermomechanical properties were investigated using dynamic mechanical analysis. Fractography was also carried out to study different modes of failure of the composites.  相似文献   
67.
Carbon fiber reinforced epoxy (CE) composite is ideal for a cryogenic fuel storage tank in space applications due to its unmatched specific strength and modulus. In this article, inter-laminar shear strength (ILSS) of carbon fiber/epoxy (CE) composite is shown to be considerably improved by engineering the interface with carboxyl functionalized multi-walled carbon nanotube (FCNT) using electrophoretic deposition technique. FCNT deposited fibers from different bath concentrations (0.3, 0.5, and 1.0 g/L) were used to fabricate the laminates, which were then tested at room (30°C) and in-situ liquid nitrogen (LN) (−196°C) temperature as well as conditioning for different time durations (0.25, 0.5, 1, 6, and 12 h) followed by immediate RT testing to study the applicability of these engineered materials at the cryogenic environment. A maximum increment in ILSS was noticed at bath concentration of 0.5 g/L, which was ~21% and ~ 17% higher than neat composite at 30°C and − 196°C, respectively. Short-term LN conditioning was found to be detrimental due to developed cryogenic shock, which was further found to be compensated by cryogenic interfacial clamping upon long-term exposure.  相似文献   
68.
The study aims at investigating the mechanical behavior of carbon fiber reinforced polymer (CFRP) composites modified with graphene carboxyl at elevated temperature (ET-110°C) and understanding the effect of electrophoretic deposition bath concentration (0.5 g/L, 1.0 g/L, and 1.5 g/L) on their mechanical behavior at ET. The 1.5 g/L composite has revealed a maximum improvement in energy absorbed before failure of 33.25% at RT and 22.54% at ET for flexural testing and ∼35% at RT for short beam shear testing, over neat CFRP composite. The modified composites have shown an improved flexural strain to failure at both RT and ET, with 1.5 g/L composite exhibiting maximum enhancement of 12.41% at RT and 26.52% at ET over neat composite. However, at ET, modified composites exhibited lower flexural strength and interlaminar shear strength values in comparison to that of neat. Viscoelastic behavior of all composites was studied to understand bath concentration's effect on thermal behavior via dynamic mechanical thermal analysis. Differential scanning calorimetry was employed for governing the glass transition temperature of composites. Fractography of tested samples (both ET and RT) was performed utilizing a scanning electron microscope to determine the prominent failure mode.  相似文献   
69.
The development of a reactively processed polypropylene nanocomposite (PPNC) with consequential improvements in the heat deflection temperature (HDT), Vicat softening temperature (VST), and crystallization peak temperature (Tc) is reported herein. Neat PP without nanoclay was also reactively processed to elucidate the effects of fillers on the improvement in physical properties. The results show a considerable improvement in the HDT of PPNC (77.9 °C) compared to those of neat PP (62.6 °C) and reactively processed branched PP (BPP; 69.2 °C). Moreover, the Tc of PP in PPNC improved by ~14% compared to that of neat PP. Various models of nonisothermal crystallization kinetics were employed to elucidate the nucleation and crystal growth mechanisms, and to correlate them with the observed HDT improvement in PPNC. Thermal transitions investigated by modulated differential scanning calorimetry explained the changes observed in the VSTs of all the samples. To the best of our knowledge, this is the first report on a significant improvement in HDT along with a marked increase in Tc. Such simultaneous improvements in HDT, VST, and Tc are highly desirable for applications involving the use of PP-based materials in rigid packaging.  相似文献   
70.
A ductile iron containing 0.6% copper as the main alloying element was austempered at a fixed austempering temperature of 330 °C for a fixed austempering time of 60 min after austenitization at 850 °C for different austenitization periods of 60, 90, and 120 min. The austempering process was repeated after changing austenitization temperature to 900 °C. The effect of austenitization temperature and time was studied on the carbon content and its distribution in the austenite after austenitization. The effect of austenitization parameters was also studied on austempered microstructure, structural parameters like volume fraction of austenite, X γ , carbon content C γ , and X γ C γ , and bainitic ferrite needle size, d α after austempering. The average carbon content of austenite increases linearly with austenitization time and reaches a saturation level. Higher austenitization temperature results in higher carbon content of austenite. As regards the austempered structure, the lowering austenitization temperature causes significant refinement and more uniform distribution of austempered structure, and a decrease in the volume fraction of retained austenite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号