首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
工业技术   47篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   6篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1980年   1篇
  1970年   2篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
41.
Diverse physical and chemical test methods are employed to evaluate important environmental characteristics of lubricants and lubricant related waste materials. The most important chemical tests are closely related to lubricant composition. The amount of aromatic and polycyclic aromatic hydrocarbons in base oils, as well as the potential amount of heavy metals in additives must be known. Among the biological tests, the most important are those dealing with biodegradation characteristics, but neither human nor ecotoxicity tests can be ignored.  相似文献   
42.
43.
In this paper some physicochemical and textural characteristics of four puff pastry margarines are defined: MLT1 and MLT2 with low trans fatty acid (TFA) content, MLT3 with relatively low and MLT4 with high TFA content. Analyzing the solid trigliceride content (SFC), the crystallization kinetics in isothermal conditions and the margarine firmness, it is determined whether the technological characteristics of margarines (which are very important for puff pastry quality) are significantly changed due to TFA decrease in margarines. The highest SFC at 10, 20, 25 i 30°C have samples MLT1 and MLT4. Despite of significant differences in fatty acid composition of these margarines, SFC content at temperatures at 20, 25, and 30°C do not differ significantly, at the level of significance of 95% (p>0.05). The SFC of MLT1 and MLT2 samples, which have practically the same fatty acid composition at every investigated temperature, statistically have significant difference (p<0.05). The crystallization kinetics are in the range from 2.6 to 10.1% per min. The significance of the induction period at every observed samples is negligible. The average firmness of margarine samples MLT1, MLT2, MLT3, and MLT4 at 20, 25, and 30°C is significantly different (p<0.05). The firmness changes of the samples MLT1 and MLT2 in the most important temperature interval for puff pastry production (between 20 and 30°C) are at level of 5 to 25%, and for margarine samples MLT3 and MLT4 these values reach even 70%.  相似文献   
44.
Optical Diffraction Tomography is a technique for retrieving a 3-dimensional refractive index distribution from phase objects without destroying the structure of the samples. In the article we discuss the selection and implementation of full and limited angle version of tomographic reconstruction processes together with the analysis of different methods for gathering projections. We present two efficient implementations of full and limited angle tomographic systems including total processing paths and providing the examplary results of 3-D refractive index determination measurements of biological samples.  相似文献   
45.
The theorem of three circles in real algebraic geometry guarantees the termination and correctness of an algorithm of isolating real roots of a univariate polynomial. The main idea of its proof is to consider polynomials whose roots belong to a certain area of the complex plane delimited by straight lines. After applying a transformation involving inversion this area is mapped to an area delimited by circles. We provide a formalisation of this rather geometric proof in Ssreflect, an extension of the proof assistant Coq, that supports a variety of algebraic tools. They allow us to formalise the proof from an algebraic point of view.  相似文献   
46.
Molecular doping is a powerful yet challenging technique for enhancing charge transport in organic semiconductors (OSCs). While there is a wealth of research on p‐type dopants, work on their n‐type counterparts is comparatively limited. Here, reported is the previously unexplored n‐dopant (12a,18a)‐5,6,12,12a,13,18,18a,19‐octahydro‐5,6‐dimethyl‐ 13,18[1′,2′]‐benzenobisbenzimidazo [1,2‐b:2′,1′‐d]benzo[i][2.5]benzodiazo‐cine potassium triflate adduct (DMBI‐BDZC) and its application in organic thin‐film transistors (OTFTs). Two different high electron mobility OSCs, namely, the polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐ bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2′‐bithiophene)] and a small‐molecule naphthalene diimides fused with 2‐(1,3‐dithiol‐2‐ylidene)malononitrile groups (NDI‐DTYM2) are used to study the effectiveness of DMBI‐BDZC as a n‐dopant. N‐doping of both semiconductors results in OTFTs with improved electron mobility (up to 1.1 cm2 V?1 s?1), reduced threshold voltage and lower contact resistance. The impact of DMBI‐BDZC incorporation is particularly evident in the temperature dependence of the electron transport, where a significant reduction in the activation energy due to trap deactivation is observed. Electron paramagnetic resonance measurements support the n‐doping activity of DMBI‐BDZC in both semiconductors. This finding is corroborated by density functional theory calculations, which highlights ground‐state electron transfer as the main doping mechanism. The work highlights DMBI‐BDZC as a promising n‐type molecular dopant for OSCs and its application in OTFTs, solar cells, photodetectors, and thermoelectrics.  相似文献   
47.
Molecular doping is a powerful and increasingly popular approach toward enhancing electronic properties of organic semiconductors (OSCs) past their intrinsic limits. The development of n-type dopants has been hampered, however, by their poor stability and high air-reactivity, a consequence of their generally electron rich nature. Here, the use of air-stable carboxylated dopant precursors is reported to overcome this challenge. Active dopants are readily generated in solution by thermal decarboxylation and applied in n-type organic field-effect transistors (OFETs). Both 1,3-dimethylimidazolium-2-carboxylate (CO2-DMI) and novel dopant 1,3-dimethylbenzimidazolium-2-carboxylate (CO2-DMBI) are applied to n-type OFETs employing well-known organic semiconductors (OSCs) P(NDI2OD-T2), PCBM, and O-IDTBR. Successful improvement of performance in all devices demonstrates the versatility of the dopants across a variety of OSCs. Experimental and computational studies indicate that electron transfer from the dopant to the host OSC is preceded by decarboxylation of the precursor, followed by dimerization to form the active dopant species. Transistor studies highlight CO2-DMBI as the most effective dopant, improving electron mobility by up to one order of magnitude, while CO2-DMI holds the advantage of commercial availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号