首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
工业技术   47篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   6篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1980年   1篇
  1970年   2篇
排序方式: 共有47条查询结果,搜索用时 0 毫秒
31.
32.
The effect of the presence of monoethanolamine (MEA) degradation products on membrane hollow fibers was investigated using untreated polypropylene (PP) as a model material. Common amine oxidative degradation products were added to MEA to simulate a degraded solution. The effect of these degradation products on the membrane gas absorption process using PP hollow fiber membrane was quantified. When PP membrane which has been exposed to amine degradation products is used in a membrane gas absorption contactor, the mass transfer rate of CO2 is reduced relative to the use of unexposed PP. It was found that the presence of oxalic acid reduced the mass transfer rate of CO2 in MEA most significantly followed by formic acid and then acetic acid. These acids are believed to adsorb into the PP, altering the surface properties and reducing the hydrophobicity of the membrane. This in turn increases the degree of wetting of the membrane pores. The membrane was characterized before and after use in a membrane gas absorption contactor containing degraded MEA solvent and studies showed that membrane pore wetting increased by 22-31% after 69 h of use. SEM images and XPS spectra of exposed PP membrane indicate that wetting may be due to both morphological and chemical changes in the membrane due to contact with the solvent. This study highlights the need to consider reductions in the mass transfer rate of membrane gas absorption processes associated with inevitable changes in the solvent composition that comes with prolonged use.  相似文献   
33.
34.
In images of the human fundus, the fraction of the total returning light that comes from the choroidal layers behind the retina increases with wavelength [Appl. Opt. 28, 1061 (1989); Vision Res. 36, 2229 (1996)]. There is also evidence that light originating behind the receptors is not coupled into the receptor waveguides en route to the pupil [S. A. Burns et al., Noninvasive Assessment of the Visual System, Vol. 11 of 1997 Trends in Optics and Photonics Series, D. Yager, ed. (Optical Society of America, 1997), p. al; Invest. Ophthalmol. Visual Sci. 38, 1657 (1997)]. These observations imply that the contrast of images of the cone mosaic should be greatly reduced with increasing wavelength. This hypothesis was tested by imaging the light distributions in both the planes of the photoreceptors and the pupil at three wavelengths, 550, 650, and 750 nm, with the Rochester adaptive optics ophthalmoscope. Surprisingly, the contrast of the retinal images varied only slightly with wavelength. Furthermore, the ratio of the receptorally guided component to the total reflected light measured in the pupil plane was found to be similar at each wavelength, suggesting that, throughout this wavelength range, the scattered light from the deeper layers in the retina is guided through the receptors on its return path to the pupil.  相似文献   
35.
36.
A simple in silico procedure is proposed with a view to predictthe agonist or antagonist character of new, AMPA-type Glu receptorchannel ligands. Based on the experimental binding domain structures,the orientation of a single Lys residue close to the ligandbinding core was found to be diagnostic of ligand-induced conformationalchanges. Acting as a switch, the position of the Lys residueindicates the agonist or antagonist character of AMPA receptorligands, known to bind to the receptor. Stability centre analysissubstantiated the key role this switch might play in ligand-inducedconformational changes.  相似文献   
37.
Incorporating the molecular organic Lewis acid tris(pentafluorophenyl)borane [B(C6F5)3] into organic semiconductors has shown remarkable promise in recent years for controlling the operating characteristics and performance of various opto/electronic devices, including, light‐emitting diodes, solar cells, and organic thin‐film transistors (OTFTs). Despite the demonstrated potential, however, to date most of the work has been limited to B(C6F5)3 with the latter serving as the prototypical air‐stable molecular Lewis acid system. Herein, the use of bis(pentafluorophenyl)zinc [Zn(C6F5)2] is reported as an alternative Lewis acid additive in high‐hole‐mobility OTFTs based on small‐molecule:polymer blends comprising 2,7‐dioctyl[1]benzothieno [3,2‐b][1]benzothiophene and indacenodithiophene–benzothiadiazole. Systematic analysis of the materials and device characteristics supports the hypothesis that Zn(C6F5)2 acts simultaneously as a p‐dopant and a microstructure modifier. It is proposed that it is the combination of these synergistic effects that leads to OTFTs with a maximum hole mobility value of 21.5 cm2 V?1 s?1. The work not only highlights Zn(C6F5)2 as a promising new additive for next‐generation optoelectronic devices, but also opens up new avenues in the search for high‐mobility organic semiconductors.  相似文献   
38.
Highly crystalline thin films in organic semiconductors are important for applications in high‐performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution‐processed blends of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) small molecule and indacenodithiophene‐benzothiadiazole (C16IDT‐BT) conjugated polymer, and (2) large‐area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field‐effect mobilities of up to 6 cm2 V?1 s?1 and the evidence of a delocalized band‐like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto‐transport properties of organic semiconductor thin films.  相似文献   
39.
Charge carrier mobility is an important characteristic of organic field‐effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky‐barrier contact resistance, that can be efficiently addressed by measurements in 4‐probe/Hall‐bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4‐probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic‐semiconductor blends and bulk single crystals. Numerical simulations reveal that 4‐probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号