首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8646篇
  免费   479篇
  国内免费   11篇
工业技术   9136篇
  2023年   75篇
  2022年   90篇
  2021年   329篇
  2020年   186篇
  2019年   204篇
  2018年   276篇
  2017年   233篇
  2016年   314篇
  2015年   234篇
  2014年   339篇
  2013年   629篇
  2012年   482篇
  2011年   616篇
  2010年   427篇
  2009年   492篇
  2008年   456篇
  2007年   413篇
  2006年   341篇
  2005年   292篇
  2004年   269篇
  2003年   258篇
  2002年   191篇
  2001年   137篇
  2000年   138篇
  1999年   115篇
  1998年   133篇
  1997年   136篇
  1996年   98篇
  1995年   79篇
  1994年   79篇
  1993年   84篇
  1992年   58篇
  1991年   61篇
  1990年   61篇
  1989年   67篇
  1988年   50篇
  1987年   47篇
  1986年   48篇
  1985年   53篇
  1984年   61篇
  1983年   44篇
  1982年   38篇
  1981年   37篇
  1980年   38篇
  1979年   32篇
  1978年   34篇
  1977年   34篇
  1976年   40篇
  1975年   40篇
  1973年   36篇
排序方式: 共有9136条查询结果,搜索用时 606 毫秒
101.
With more than 25 million people affected, heart failure (HF) is a global threat. As energy production pathways are known to play a pivotal role in HF, we sought here to identify key metabolic changes in ischemic- and non-ischemic HF by using a multi-OMICS approach. Serum metabolites and mRNAseq and epigenetic DNA methylation profiles were analyzed from blood and left ventricular heart biopsy specimens of the same individuals. In total we collected serum from n = 82 patients with Dilated Cardiomyopathy (DCM) and n = 51 controls in the screening stage. We identified several metabolites involved in glycolysis and citric acid cycle to be elevated up to 5.7-fold in DCM (p = 1.7 × 10−6). Interestingly, cardiac mRNA and epigenetic changes of genes encoding rate-limiting enzymes of these pathways could also be found and validated in our second stage of metabolite assessment in n = 52 DCM, n = 39 ischemic HF and n = 57 controls. In conclusion, we identified a new set of metabolomic biomarkers for HF. We were able to identify underlying biological cascades that potentially represent suitable intervention targets.  相似文献   
102.
The lysosomal storage disease Niemann–Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1−/− mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1−/− liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Immunohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1−/− liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1−/− liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1−/− hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.  相似文献   
103.
104.
Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.  相似文献   
105.
Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.  相似文献   
106.
About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2–c.378+1G>T) in the first patient and a nonsense mutation (DSG2–p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.  相似文献   
107.
Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5−6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5−6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5−6 zebrafish is largely dependent on interleukin-1β and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5−6 mutant larvae in a context-dependent manner. We expect the sgshΔex5−6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.  相似文献   
108.
In this paper, a novel concept of a thermo-mechanical MEMS actuator using aluminum thin-film heaters on a thermal oxide for electrical insulation is presented. The actuator is part of an universal tensile testing platform for thermo-mechanical material characterization of one dimensional materials on a micro- and nano-scopic scale under different environmental conditions, as varying temperatures, pressure, moisture or even vacuum and is realised in BDRIE technology. It is shown, that the actuator concept fulfills the requirements for the use in a tensile loading stage along with heterogeneously integrated nanofunctional elements, following a specimen centered approach in line with bottom-up self-assembly processes. Simulation and experiment agree very well in the thermal and mechanical domain and allow subsequent optimisation of the actuator performance.  相似文献   
109.
Using a well-known industrial case study from the verification literature, the bounded retransmission protocol, we show how active learning can be used to establish the correctness of protocol implementation I relative to a given reference implementation R. Using active learning, we learn a model M R of reference implementation R, which serves as input for a model-based testing tool that checks conformance of implementation I to M R . In addition, we also explore an alternative approach in which we learn a model M I of implementation I, which is compared to model M R using an equivalence checker. Our work uses a unique combination of software tools for model construction (Uppaal), active learning (LearnLib, Tomte), model-based testing (JTorX, TorXakis) and verification (CADP, MRMC). We show how these tools can be used for learning models of and revealing errors in implementations, present the new notion of a conformance oracle, and demonstrate how conformance oracles can be used to speed up conformance checking.  相似文献   
110.
Graphic processing units (GPUs) emerged recently as an exciting new hardware environment for a truly parallel implementation and execution of Nature and Bio-inspired Algorithms with excellent price-to-power ratio. In contrast to common multicore CPUs that contain up to tens of independent cores, the GPUs represent a massively parallel single-instruction multiple-data devices that can nowadays reach peak performance of hundreds and thousands of giga floating-point operations per second. Nature and Bio-inspired Algorithms implement parallel optimization strategies in which a single candidate solution, a group of candidate solutions (population), or multiple populations seek for optimal solution or set of solutions of given problem. Genetic algorithms (GA) constitute a family of traditional and very well-known nature-inspired populational meta-heuristic algorithms that have proved its usefulness on a plethora of tasks through the years. Differential evolution (DE) is another efficient populational meta-heuristic algorithm for real-parameter optimization. Particle swarm optimization (PSO) can be seen as nature-inspired multiagent method in which the interaction of simple independent agents yields intelligent collective behavior. Simulated annealing (SA) is global optimization algorithm which combines statistical mechanics and combinatorial optimization with inspiration in metallurgy. This survey provides a brief overview of the latest state-of-the-art research on the design, implementation, and applications of parallel GA, DE, PSO, and SA-based methods on the GPUs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号