首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   19篇
  国内免费   12篇
地球科学   676篇
  2022年   6篇
  2021年   12篇
  2020年   7篇
  2019年   11篇
  2018年   26篇
  2017年   31篇
  2016年   41篇
  2015年   24篇
  2014年   33篇
  2013年   49篇
  2012年   37篇
  2011年   35篇
  2010年   32篇
  2009年   33篇
  2008年   33篇
  2007年   16篇
  2006年   16篇
  2005年   13篇
  2004年   7篇
  2003年   15篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   3篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   9篇
  1992年   3篇
  1991年   6篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   10篇
  1978年   4篇
  1977年   3篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1969年   3篇
排序方式: 共有676条查询结果,搜索用时 0 毫秒
671.
Understanding the flow behavior through fractures is critically important in a wide variety of applications. In many situations, the fluid flow can be highly irregular and non-linear in nature. Numerical simulation can be employed to simulate such conditions which are difficult to replicate in laboratory experiments. Therefore, a parametric study has been conducted on the fluid flow through micro-fracture over a large range of inlet pressure, fluid density, fluid viscosity, temperature, joint roughness coefficient (JRC), and fracture using finite element analysis. Irregular fracture profiles were created using Barton’s joint roughness coefficient. The Navier-Stokes (NS) equation was used to simulate the flow of water in those micro-fractures. The result showed that the fracture, fluid, and ambient conditions have a wide and varied effect on the fluid flow behavior. The interrelationship between these parameters was also studied. The model simulation provided result in the form of velocity and pressure drop profile, which can be used to determine the behavior of flow under different condition. The volumetric flow was calculated for each condition and has been plotted against the corresponding parameter to study the interrelationship.  相似文献   
672.
673.
Mukherjee  Arnab  Ghosh  Supriyo 《Ocean Dynamics》2023,73(6):373-386
Ocean Dynamics - In this study, interannual variability and associated dynamics of sea level anomaly (SLA) along the western boundary of the Bay of Bengal (WBoB) during the summer...  相似文献   
674.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   
675.
This study examines the effect of autocorrelation on step and monotonic trends in seasonal and annual rainfall. Initially, for step change, modified-Pettitt test is applied in two ways. First, using the corrected and unbiased trend-free-pre-whitening (TFPWcu) approach. Second, using a new approach in which time series is modelled by intervention analysis for modified Pettitt test. Subsequently, for monotonic trends, Mann–Kendall (MK) and six approaches of modified Mann–Kendall (MMK) test are applied to NCDC data for period 1901–2012 and its sub-periods. Approaches of MMK include pre-whitening (PW), trend-free-pre-whitening (TFPW), TFPWcu, two Variance Correction Approaches (VCAs) based on empirical formula (VCA:CF1) and Monte-Carlo-Simulations (VCA:CF2) and long term persistence (MK-LTP). A single change point is identified in 1970 for annual and monsoon rainfall from original and modified-Pettitt’s test using TFPWcu, while time series modelling approach has not exhibited any change point. Process shift in rainfall series is also studied using CUSUM and multiple change points are identified using Segment-Neighbourhood method. Outcomes of MMK show that TFPWcu is able to efficiently limit the effect of autocorrelation and may be preferred over PW and TFPW. The VCA:CF2 is not dependent on whole autocorrelation structure and corrects variance of all data series using lag-1 autocorrelation and may be preferred over VCA:CF1. MK-LTP considers long term persistence and it has exhibited presence of weaker trends than exhibited by other approaches. VCA:CF2 and MK-LTP are used to study trends of rainfall in Dehradun.  相似文献   
676.
Causes and effects of global warming have been highly debated in recent years. Nonetheless, injection and storage of CO2 (CO2 sequestration) in the subsurface is becoming increasingly accepted as a viable tool to reduce the amount of CO2 from the atmosphere, which is a primary contributor to global warming. Monitoring of CO2 movement with time is essential to ascertain that sequestration is not hazardous. A method is proposed here to appraise CO2 saturation from seismic attributes using differential effective medium theory modified for pressure (PDEM). The PDEM theory accounts pressure-induced fluid flow between cavities, which is a very important investigation in the CO2-sequestered regime of heterogeneous microstructure. The study area is the lower Tuscaloosa formation at Cranfield in Mississippi, USA, which is one of the active enhanced oil recovery (EOR), and CO2 capture and storage (CCS) fields. Injection well (F1) and two observation wells (F2 and F3) are present close (within 112 m) to the detailed area of study for this region. Since the three wells are closely situated, two wells, namely injection well F1 and the furthest observation well F3, have been focused on to monitor CO2 movement. Time-lapse (pre- and post-injection) log, core and surface seismic data are used in the quantitative assessment of CO2 saturation from the PDEM theory. It has been found that after approximately 9 months of injection, average CO2 saturations in F1 and F3 are estimated as 50% in a zone of thickness ~ 25 m at a depth of ~ 3 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号