首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154736篇
  免费   6612篇
  国内免费   3148篇
工业技术   164496篇
  2024年   203篇
  2023年   1257篇
  2022年   1806篇
  2021年   2889篇
  2020年   2226篇
  2019年   1956篇
  2018年   16316篇
  2017年   15569篇
  2016年   11834篇
  2015年   3323篇
  2014年   3685篇
  2013年   4440篇
  2012年   7502篇
  2011年   14103篇
  2010年   12330篇
  2009年   9375篇
  2008年   10491篇
  2007年   11372篇
  2006年   3905篇
  2005年   4630篇
  2004年   3390篇
  2003年   3244篇
  2002年   2392篇
  2001年   1729篇
  2000年   1967篇
  1999年   2089篇
  1998年   1806篇
  1997年   1433篇
  1996年   1440篇
  1995年   1184篇
  1994年   949篇
  1993年   717篇
  1992年   551篇
  1991年   442篇
  1990年   325篇
  1989年   248篇
  1988年   228篇
  1987年   138篇
  1986年   101篇
  1985年   89篇
  1984年   59篇
  1982年   42篇
  1968年   46篇
  1966年   42篇
  1965年   45篇
  1958年   37篇
  1957年   36篇
  1956年   35篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
0.5 at.% Cr:ZnGa2O4 precursor was synthesized by the co-precipitation method with nitrates as raw materials, using ammonium carbonate as the precipitant. Low-agglomerated Cr:ZnGa2O4 powders with an average particle size of 43 nm were obtained by calcining the precursor at 900℃ for 4 h. Using the powders as starting materials, 0.5 at.% Cr:ZnGa2O4 ceramics with an average grain size of about 515 nm were prepared by presintering at 1150℃ for 5 h in air and HIP post-treatment at 1100℃ for 3 h under 200 MPa Ar. The in-line transmittance of 0.5 at.% Cr:ZnGa2O4 ceramics with a thickness of 1.3 mm reaches 59.5% at the wavelength of 700 nm. The Cr:ZnGa2O4 ceramics can be effectively excited by visible light and produce persistent luminescence at 700 nm. For Cr:ZnGa2O4 transparent ceramics, the brightness of afterglow was larger than 0.32 mcd/m2 after 30 min, which is far superior to that of Cr:ZnGa2O4 persistent luminescence powders.  相似文献   
62.
Mobile software applications have to cope with a particular environment that involves small size, limited resources, high autonomy requirements, competitive business models and many other challenges. To provide development guidelines that respond to these needs, several practices have been introduced; however, it is not clear how these guidelines may contribute to solve the issues present in the mobile domain. Furthermore, the rapid evolution of the mobile ecosystem challenges many of the premises upon which the proposed practices were designed. In this paper, we present a survey of the literature on software assurance practices for mobile applications, with the objective of describing them and assessing their contribution and success. We identified, organized and reviewed a body of research that spans in three levels: software development processes, software product assurance practices, and software implementation practices. By carrying out this literature survey, we reviewed the different approaches that researchers on Software Engineering have provided to address the needs that raise in the mobile software development arena. Moreover, we review the evolution of these practices, identifying how the constant changes and modernization of the mobile execution environment has impacted the methods proposed in the literature. Finally, we introduced discussion on the application of these practices in a real productive setting, opening an area for further research that may determine if practitioners have followed the proposed assurance paradigms.  相似文献   
63.
A novel AlSiMgAl2O4Al2O3 composite brick was prepared and evaluated in the low vessel of an RH (the initials of Ruhrstahl and Hereaeus) secondary refining furnace; it was characterized by X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The results show that after use, the AlSiMgAl2O4Al2O3 composite has a functional gradient with an erosion zone–reinforced zone–original zone phase distribution, in which the phases in the erosion zone (0–1.8?cm) are a Mg-hercynite spinel solid solution, α-Al2O3, and minor amount of Al3Fe5O12. Furthermore, the phases in the reinforced zone (1.8–5.0?cm) are γ-AlON, 21RSiAlON, SiC, Mg0.388Al2.408O4, and α-Al2O3; i.e., the Al and Si in the composite are completely converted into non-oxide reinforced phases. Finally, the phases in the original zone (>5.0?cm) show no change. The reaction mechanism is as follows. During operation, a Mg-hercynite spinel solid solution is formed in the erosion zone due to a reaction between MgAl2O4 and FeO from a refinery operation. Therefore, the slag erosion of the material is improved. The Al and Si metals undergo active oxidation, and 21RSiAlON flakes are subsequently formed from the products of the metastable Al2O(g), SiO(g), and N2(g) in the ambient. The γ-AlON is formed by a carbothermal reduction nitridation of the α-Al2O3 and residual active carbon from the resin binder. The 21RSiAlON and γ-AlON reinforce the composite brick and improve its high temperature performance accordingly. Its service life is 110% that of the magnesia-chrome bricks used in the same period. The reaction model was also established.  相似文献   
64.
Multimedia Tools and Applications - To address the problems of insufficient detail extraction and long training time in the super-resolution reconstruction of chest X-ray images, a method of chest...  相似文献   
65.
This paper presents an integrated passive damping approach in hybrid metal-CFRP parts for structural applications. In this concept a viscoelastic material is embedded in the joint zone of the hybrid component. To examine the connection strength single-lap-joint specimens were produced and tested and the influence of the used material combinations, different surface structures, and different process parameters i.e. the moment of cross-linking were evaluated. Afterwards, the metal-CFRP hybrids were tested in quasi-static tests to assess their connection strength and failure behaviour. Dynamic cyclic tensile tests with step-wise increased loading conditions were performed to determine the specimens damping behaviour and to estimate their fatigue performance. Finally, these results are compared to a state of the art metal-CFRP hybrid with rivets connecting both materials.  相似文献   
66.
苏里格气田是中国典型的致密砂岩气藏,构造简单、平缓,横向非均质性强,有效储层与围岩声学特征差别小,地震响应不明显,常规地震监测方法预测难度大,但气田含气砂岩泊松比低,是地震气藏检测的有效参数。利用弹性全波形反演精度高和能处理复杂非均质介质的优势,反演地层拉梅常数、剪切模量和密度,并计算泊松比,从而进行气藏预测。重点阐述了苏里格气田多分量数据全波形反演初始模型建模、先验模型建模和地震数据预处理3个关键问题的处理方法。二维三分量数据反演和"甜点"预测结果表明:①对于具有强非均质性的苏里格气田,利用全波形反演获得精度较高的地层弹性参数能显著提高气藏预测的准确度;②苏里格地区构造简单、平缓,利用常规叠加速度并结合构造解释可以建立比较好的初始模型,从而有效地解决了周波跳跃和局部极小的难题;③先验知识的约束和地震数据的预处理是全波形反演成功应用于苏里格气田气藏检测的关键。  相似文献   
67.
This work investigates the critical roles of two-step sintering (TSS) and laminated structure on the sintering behavior and mechanical properties of functionally graded WC-TiC-Al2O3 nanostructured composite materials doped with Cr3C2/VC. Results show that excellent mechanical properties are achieved for tailored TSS conditions with a hardness of 27.91?±?2.3?GPa and a flexural strength of 1423.3?±?23.5?MPa. The desirable mechanical properties are attributed to the suppressed grain growth without densification deterioration. TSS is more effective in facilitating the favorable dispersion of secondary phase toughening nano-particulates in a WC matrix than conventional sintering (CS). Cr3C2/VC dopant plays an important role in maximizing and shifting the temperature range of the kinetic window for WC-Al2O3 composites. Al2O3 crack deflection, transgranular Al2O3, microcracking, WC crack bridging and plate-like WC crack deflection are the major toughening mechanisms. Residual surface compressive stress induced by the graded structure is also an appreciated contribution to the improvement of mechanical properties.  相似文献   
68.
In this paper, we consider the classical finite mixture model, which is an effective tool for modeling lifetime distributions for random samples from heterogeneous populations. We discuss new results on stochastic comparison for two finite mixtures when each of them is drawn from one of the following semiparametric families, i.e., proportional hazards, accelerated lifetime and proportional reversed hazards.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号