首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1816篇
  免费   147篇
  国内免费   13篇
工业技术   1976篇
  2024年   8篇
  2023年   47篇
  2022年   58篇
  2021年   123篇
  2020年   110篇
  2019年   124篇
  2018年   157篇
  2017年   151篇
  2016年   124篇
  2015年   87篇
  2014年   125篇
  2013年   203篇
  2012年   108篇
  2011年   114篇
  2010年   81篇
  2009年   58篇
  2008年   38篇
  2007年   32篇
  2006年   31篇
  2005年   21篇
  2004年   19篇
  2003年   13篇
  2002年   9篇
  2001年   10篇
  2000年   8篇
  1999年   10篇
  1998年   28篇
  1997年   21篇
  1996年   13篇
  1995年   3篇
  1994年   7篇
  1993年   8篇
  1992年   2篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   3篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有1976条查询结果,搜索用时 73 毫秒
31.
Water Resources Management - This paper shows the utility of a new interval cooperative game theory as an effective water diplomacy tool to resolve competing and conflicting needs of water users...  相似文献   
32.
Internet of Things (IoT) is a newly emerged paradigm where multiple embedded devices, known as things, are connected via the Internet to collect, share, and analyze data from the environment. In order to overcome the limited storage and processing capacity constraint of IoT devices, it is now possible to integrate them with cloud servers as large resource pools. Such integration, though bringing applicability of IoT in many domains, raises concerns regarding the authentication of these devices while establishing secure communications to cloud servers. Recently, Kumari et al proposed an authentication scheme based on elliptic curve cryptography (ECC) for IoT and cloud servers and claimed that it satisfies all security requirements and is secure against various attacks. In this paper, we first prove that the scheme of Kumari et al is susceptible to various attacks, including the replay attack and stolen-verifier attack. We then propose a lightweight authentication protocol for secure communication of IoT embedded devices and cloud servers. The proposed scheme is proved to provide essential security requirements such as mutual authentication, device anonymity, and perfect forward secrecy and is robust against security attacks. We also formally verify the security of the proposed protocol using BAN logic and also the Scyther tool. We also evaluate the computation and communication costs of the proposed scheme and demonstrate that the proposed scheme incurs minimum computation and communication overhead, compared to related schemes, making it suitable for IoT environments with low processing and storage capacity.  相似文献   
33.
Construction of high efficiency and stable Li metal anodes is extremely vital to the breakthrough of Li metal batteries. In this study, for the first time, groundbreaking in situ plasma interphase engineering is reported to construct high-quality lithium halides-dominated solid electrolyte interphase layer on Li metal to stabilize & protect the anode. Typically, SF6 plasma-induced sulfured and fluorinated interphase (SFI) is composed of LiF and Li2S, interwoven with each other to form a consecutive solid electrolyte interphase. Simultaneously, brand-new vertical Co fibers (diameter: ≈5 µm) scaffold is designed via a facile magnetic-field-assisted hydrothermal method to collaborate with plasma-enhanced Li metal anodes (SFI@Li/Co). The Co fibers scaffold accommodates active Li with mechanical integrity and decreases local current density with good lithiophilicity and low geometric tortuosity, supported by DFT calculations and COMSOL Multiphysics simulation. Consequently, the assembled symmetric cells with SFI@Li/Co anodes exhibit superior stability over 525 h with a small voltage hysteresis (125 mV at 5 mA cm−2) and improved Coulombic efficiency (99.7%), much better than the counterparts. Enhanced electrochemical performance is also demonstrated in full cells with commercial cathodes and SFI@Li/Co anode. The research offers a new route to develop advanced alkali metal anodes for energy storage.  相似文献   
34.
Wireless Personal Communications - Multimodal biometric systems combine feature knowledge from multiple traits to overcome shortcomings of unimodal systems. However, most of the traditional...  相似文献   
35.
Wireless Personal Communications - In this paper, we propose a new reputation approach, called I-WD (improved WatchDog). We attempt to eliminate selective dropping attack that ensue when malicious...  相似文献   
36.
CeO2 and Co3O4–CeO2 nanoparticles were synthesized, thoroughly characterized, and evaluated in the COPrOx reaction. The CeO2 nanoparticles were synthesized by the diffusion-controlled precipitation method with ethylene glycol. A notably higher yield was obtained when H2O2 was used in the synthesis procedure. For comparison, two commercial samples of CeO2 nanoparticles (Nyacol®)—one calcined and the other sintered—were also studied. Catalytic results of bare CeO2 calcined at 500 °C showed a strong influence of the method of synthesis. Despite having similar BET area values, the CeO2 synthesized without H2O2 was the most active sample. Co3O4–CeO2 catalysts with three different Co/(Co + Ce) atomic ratios, 0.1, 0.3, and 0.5, were prepared by the wet impregnation of the CeO2 nanoparticles. TEM and STEM observations showed that impregnation produced mixed oxides composed of small CeO2 nanoparticles located both over the surface and inside the Co3O4 crystals. The mixed oxide catalysts prepared with a cobalt atomic ratio of 0.5 showed methane formation, which started at 200 °C due to the reaction between CO2 and H2. However, above 250 °C, the reaction between CO and H2 became important, thus contributing to CO elimination with a small H2 loss. As a result, CO could be totally eliminated in a wide temperature range, from 200 to 400 °C. The methanation reaction was favored by the reduction of the cobalt oxide, as suggested by the TPR experiments. This result is probably originated in Ce–Co interactions, related to the method of synthesis and the surface area of the mixed oxides obtained.  相似文献   
37.
In this paper, all-optical tunable filters based on two-dimensional photonic crystals with very small dimensions for optical telecommunication of WDM technology are designed and simulated. The structure is made of air holes in a dielectric background. The tuning is done by changing resonant defect angle. The channels obtained for this structure will be set in wavelength range of 1550 nm. Created channels are at wavelengths of 1550, 1551, 1552, and 1565 (16 channels); the distance between adjacent channels is 1 nm. Design and simulation of this filter is done by RSOFT software. Quality factor, transmission efficiency, and band gap shows that filter performance is very good.  相似文献   
38.
39.
A nonlinear model with on-line parameter estimation using recursive identification for switched reluctance motors (SRMs) is presented. The model is robust toward parameter variations in the motor or any system disturbances. The parameters of the model are adjusted to account for errors in rotor position, which allows the use of crude inexpensive position sensors. The proposed modeling approach allows self-tuning of SRMs in a production unit. The simulations and experiments performed to test the model demonstrate the accuracy of estimation of the model  相似文献   
40.
This paper presents an algorithm for synchronizing two different chaotic systems by using a combination of Unscented Kalman-Bucy Filter (UKBF) and sliding mode controller. It is assumed that the drive chaotic system is perturbed by white noise and shows stochastic chaotic behavior. In addition the output of the system does not contain the whole state variables of the system, and it is also affected by some independent white noise. By combining the UKBF and the sliding mode control, a synchronizing control law is proposed. Simulation results show the ability of the proposed method in synchronizing chaotic systems in presence of noise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号