首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   21篇
  国内免费   1篇
工业技术   320篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   15篇
  2020年   9篇
  2019年   27篇
  2018年   15篇
  2017年   16篇
  2016年   21篇
  2015年   11篇
  2014年   16篇
  2013年   24篇
  2012年   20篇
  2011年   24篇
  2010年   18篇
  2009年   16篇
  2008年   7篇
  2007年   11篇
  2006年   8篇
  2005年   10篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有320条查询结果,搜索用时 781 毫秒
91.
Incorporating cadmium sulfide quantum dots (CdS QDs) onto ZnO nanorod (ZNRs) has been investigated to be an efficient approach to enhance the photovoltaic performance of the inverted organic solar cell (IOSC) devices based on ZNRs/poly (3-hexylthiophene) (P3HT). To synthesize CdS/ZNRs, different durations of deposition per cycle from 1 to 9 min were used to deposit CdS via SILAR technique onto ZNRs surface grown via hydrothermal method at low temperature on FTO substrate. In typical procedures, P3HT as donor polymer were spun-coating onto CdS/ZNRs to fabricate IOSC devices, followed by Ag deposition as anode by magnetron sputtering technique. Incorporation of CdS QDs has modified the morphological, structural, and optical properties of ZNRs. Incorporation of CdS QDs onto ZNRs also led to higher open circuit voltage (Voc) and short circuit current density (Jsc) of optimum ZNRs/CdS QDs devices due to the increased interfacial area between ZNRs and P3HT for more efficient exciton dissociation, reduced interfacial charge carrier recombination as a result of lower number of oxygen defects which act as electron traps in ZnO and prolonged carrier recombination lifetime. Therefore, the ZNRs/CdS QDs/P3HT device exhibited threefold higher PCE (0.55%) at 5 min in comparison to pristine ZNR constructed device (0.16%). Overall, our study highlights the potential of ZNRs/CdS QDs to be excellent electron acceptors for high efficiency hybrid optoelectronic devices.  相似文献   
92.
CaCu3Ti4O12 (CCTO) thin films with a thickness of 200 nm were deposited on ITO substrates by RF magnetron sputtering using a pure CCTO target. After the deposition, thin films were annealed at 400, 450, 500 and 550?°C, respectively, for 1 h. The effects of annealing temperature on the structural, surface morphology, optical properties and resistivity of (CCTO) thin films were investigated. The X-ray diffractometer results show that the thin films are polycrystalline in nature and are assigned to body-centered cubic perovskite configuration with a space group of Im-3. The intensity of the peaks and crystallinity gradually increased with the increase in annealing temperature. Microstructural investigation through FESEM showed that the grain size increased with increase in annealing temperature from 32 to 85 nm. The root mean square and roughness (Ra) were also enhanced with higher annealing temperatures, from 3.8 to 6.2 nm and from 4.7 to 7.7 nm, respectively, as confirmed by AFM. Increase in annealing temperature also affected the optical transmittance values which decreased to almost 60% at the visible range (550–850), as well as the optical energy band gap which decreased from 3.86 to 3.39 eV. The relevance between resistance behaviors and film microstructure is discussed. Therefore, it can be concluded that the desirable crystallinity, surface roughness, energy band gap and resistivity for 200 nm thick CCTO thin films deposited by RF magnetron sputtering can be achieved through the annealing process.  相似文献   
93.
This paper proposes accurate partial shading modeling of photovoltaic (PV) system. The main contribution of this work is the utilization of the two-diode model to represent the PV cell. This model requires only four parameters and known to have better accuracy at low irradiance level, allowing for more accurate prediction of PV system performance during partial shading condition. The proposed model supports a large array simulation that can be interfaced with MPPT algorithms and power electronic converters. The accurateness of the modeling technique is validated by real time simulator data and compared with the three other types of modeling, namely Neural Network, P&O and single-diode model. It is envisaged that the proposed work is very useful for PV professionals who require simple, fast and accurate PV model to design their systems.  相似文献   
94.
This paper presents a high efficiency non-isolated bidirectional converter which can be employed as an interface circuit between ultracapacitors or batteries and DC bus voltage. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. So, the energy conversion through the converter is highly efficient. The proposed converter acts as a zero-voltage transition (ZVT) buck to charge an ultracapacitor or battery and acts as a ZVT boost to discharge an ultracapacitor or battery. The performance of the proposed converter with respect to abrupt load and operating mode change is shown through computer simulation results. The results confirm the aforementioned advantages and features of the proposed converter.  相似文献   
95.
Poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHH)/poly(butylene succinate) (PBS) blends were prepared using a melt blending technique. A compatibilizer of maleated PBS (PBSgMA) was produced using reactive melt grafting by varying the maleic anhydride (MA) monomer concentration ranging from 3 to 10 parts per hundred resin (phr). Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy analyses confirmed the grafting reaction of the PBSgMA. The PBSgMA was incorporated in the 80PHBHH/20PBS and 50PHBHH/50PBS blends to investigate the effect of maleated compatibilizer on the tensile, flexural, drop weight impact, and water absorption properties of the blends with droplets dispersed and co-continuous morphology. The incorporation of PBSgMA increased the tensile and flexural strength of both the 80PHBHH/20PBS and 50PHBHH/50PBS blends, where the optimum properties achieved at 5 phr concentration of MA. The drop weight impact test results showed that uncompatibilized and compatibilized 50PHBHH/50PBS blends had higher critical strain energy release rate (Gc) than the neat PHBHH. However, blending and compatibilizing did not have a positive effect on the critical stress intensity factor (Kc) of the neat PHBHH. Scanning electron microscopy (SEM) confirmed the improvement of interfacial adhesion and PBS polymer dispersion in PHBHH/PBS blends when incorporated with 5PBSgMA. The water absorption test results demonstrated that compatibilized blends absorbed slightly more water than uncompatibilized blends due to the presence of hygroscopic carboxyl groups of the PBSgMA. However, water absorption effects were reversible and did not result in severe permanent damage to the blends.  相似文献   
96.
This work studies the electrical and optical properties of the conducting polymer composite films of polypyrrole–chitosan (PPy–CHI). The surface plasmon resonance (SPR) technique was used to study the optical properties of PPy and PPy–CHI composite films. Then, the values of the real and imaginary parts of the refractive indexes of PPy and PPy–CHI films were obtained by nonlinear least square fitting using Fresnel equations for a three-layer system of SPR system. The electrical conductivity measurements showed that the conductivity of the electrochemical prepared films improved in the presence of CHI and can be controlled by varying the CHI amount in the composite. The thermal diffusivity of the PPy–CHI composite films was measured by open photoacoustic spectroscopy and it has been shown that the thermal diffusivity is related to the electron migration in the conjugation chain length. The increase in electromagnetic interference shielding effectiveness (EMI SE) with the increase in electrical conductivity of the films is mostly from shielding by reflection rather than absorption.  相似文献   
97.
Electrochemical-assisted photodegradation of methyl orange has been investigated using TiO2 thin films. The films were prepared by sol-gel dip-coating method. Several operational parameters to achieve optimum efficiency of this electrochemical-assisted photodegradation system have been tested. Photoelectrochemical degradation was studied using different light sources and light intensity. The light sources chosen ranged from ultraviolet to visible light. The effect of agitation of the solution at different speeds has also been studied. Slight improvement of photodegradation rate was observed by applying higher agitation speed. Investigation on the electrode after repeated usages show the electrode can be reused up to 20 times with percentage of deficiency less than 15%. The study on the effect of solution temperature indicated that the activation energy of the methyl orange degradation is 18.63 kJ mol(-1).  相似文献   
98.
Adsorption of zinc from aqueous solutions to bentonite   总被引:6,自引:0,他引:6  
The adsorptive properties of natural and Na-enriched bentonite in zinc rich aqueous environment have been studied. The results show that adsorption behavior of both bentonites was strongly depending on the pH. At low pH values, the mechanisms that govern the adsorption behavior of bentonites are dissolution of crystal structure and competition of the metal ions with the H+. Between pH 4 and 7, the basic mechanism is an ion exchange process. The alkaline and alkaline earth metals located in the exchangeable sites of bentonites are replaced with Zn2+ cations present in the aqueous solution. At higher pH values (i.e. pH 8), formation of zinc hydroxyl species may result either participation to the adsorption or precipitation onto the bentonites. Therefore, a rapid increase in the equilibrium removal of zinc was obtained above pH 7. Increase in the initial metal ion concentration led to the increase in equilibrium adsorption to a certain degree; then, a plateau was obtained at higher concentrations. The rate of zinc removal depends also on the solid concentration of the suspension. Reducing the slurry concentration allows particles to get in the more dispersed form, resulting higher available sorption sites for zinc. As a result, the adsorption performance of Na-enriched bentonite is better than the natural bentonite in all physical and chemical changes. The data were fitted both Langmuir and Freundlich isotherms.  相似文献   
99.
The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out. An erratum to this article is available at .  相似文献   
100.
The thermal, mechanical, and morphological properties of biobased thermoplastic starch (TPS) obtained from agricultural waste seed (AWS) and agricultural waste tuber (AWT) blended with polypropylene (PP) were investigated in this article. The grounded (pulverized) AWS and AWT were different in amylose/amylopectin ratios and contained relatively low starch content (≤50%). The commercial grade of TPS (CS) and native tapioca starch blended PP (NTS/PP) were also prepared for comparison. The performances of the TPS/PP blends were dependent on the starch composition (e.g., amylose‐to‐amylopectin ratio), particle size, dispersion, and interfacial adhesion with matrix. The high‐amylopectin starch blend (i.e., AWS/PP) was more susceptible to thermal degradation than the amylose‐rich material (i.e., NTS/PP). The addition of starch to PP not only led to a stiffening effect (i.e., increase in storage modulus), but it also affected the relaxation of polymer matrix by shifting the thermal transition (i.e., glass transition temperature) to a higher temperature. POLYM. ENG. SCI., 54:1357–1365, 2014. © 2013 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号