首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   808篇
  免费   85篇
  国内免费   9篇
工业技术   902篇
  2024年   1篇
  2023年   23篇
  2022年   49篇
  2021年   82篇
  2020年   55篇
  2019年   78篇
  2018年   68篇
  2017年   81篇
  2016年   72篇
  2015年   44篇
  2014年   57篇
  2013年   75篇
  2012年   42篇
  2011年   45篇
  2010年   28篇
  2009年   28篇
  2008年   15篇
  2007年   12篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有902条查询结果,搜索用时 990 毫秒
91.
Amorphous silica gel modified carbon paste electrode (CPE) offers substantial improvements in voltammetric sensitivity and selectivity towards determination of dopamine (DA). Cyclic voltammetry of Fe(CN)63−/4− as a negatively charged probe revealed that the surface of the silica gel modified carbon paste electrode had a high density of negative charge at pH 8.0. Therefore, the modified electrode adsorbed DA (pKa = 8.9) and enhanced its voltammetric response while repulsed ascorbic acid (AA) (pKa = 4.2) and uric acid (UA) (pKa = 5.4) and inhibited their interfering effects. The influence of various experimental parameters including percent of silica gel in the CPE, pH of solution, and accumulation time and potentials, on the voltammetric response of DA was investigated. At the optimum conditions, the analytical curve was linear for dopamine concentrations from 2.0 × 10−7 to 1.0 × 10−6 mol L−1 and 2.0 × 10−6 to 1.5 × 10−4 mol L−1 with a detection limit (3σ) of 4.8 × 10−8 mol L−1. The prepared electrode was used for determination of DA spiked into DA injection and human serum samples, and very good recovery results were obtained over a wide concentration range of DA.  相似文献   
92.
Nanofluids because of their surface characteristics improve the oil production from reservoirs by enabling different enhanced recovery mechanisms such as wettability alteration, interfacial tension (IFT) reduction, oil viscosity reduction, formation and stabilization of colloidal systems and the decrease in the asphaltene precipitation. To the best of the authors’ knowledge, the synthesis of a new nanocomposite has been studied in this paper for the first time. It consists of nanoparticles of both SiO2 and Fe3O4. Each nanoparticle has its individual surface property and has its distinct effect on the oil production of reservoirs. According to the previous studies, Fe3O4 has been used in the prevention or reduction of asphaltene precipitation and SiO2 has been considered for wettability alteration and/or reducing IFTs in enhanced oil recovery. According to the experimental results, the novel synthesized nanoparticles have increased the oil recovery by the synergistic effects of the formed particles markedly by activating the various mechanisms relative to the use of each of the nanoparticles in the micromodel individually. According to the results obtained for the use of this nanocomposite, understanding reservoir conditions plays an important role in the ultimate goal of enhancing oil recovery and the formation of stable emulsions plays an important role in oil recovery using this method.  相似文献   
93.
The purpose of this study was the production of copolymers and terpolymers with highly hydrophilic–hydrophobic properties, using inexpensive and available monomers as potential enhancing oil recovery (EOR) and water production control agents for high-temperature and high-salinity (HTHS) oil reservoirs. For this purpose, several copolymers and terpolymers with different molar percentage of acrylamide/styrene, acrylamide/maleic anhydride, and acrylamide/styrene/maleic anhydride were synthesized by the inverse emulsion polymerization technique. The presence of hydrophobic styrene and hydrophilic maleic anhydride monomers in the copolymer and terpolymer structure, provided some unique properties compared to polyacrylamide, was confirmed by several analyses including HNMR, elemental analysis, FTIR, SEM, TGA, and DSC. Simulating HTHS oil reservoir condition under high salinity, temperature, and shear rate, the rheological studies suggested unlike traditional EOR agents such as polyacrylamide, the viscosity of the copolymer, and terpolymer aqueous solutions showed a considerable increase after a critical polymer concentration and less reduction with the salt increment at both ambient and elevated temperatures. Furthermore, the swelling ratio of the insoluble terpolymers measured versus the time and temperature in salt water increased with the maleic anhydride mole fraction, decreased with the salt concentration, and showed a maximum value at around 57 °C. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47753.  相似文献   
94.
95.
96.
Aghaeipour  Zahra  Naderi  Ali 《SILICON》2020,12(11):2611-2618
Silicon - This paper proposes an efficient structure for nanoscale silicon on insulator (SOI) MOSFETs. Two P+ pockets are considered in buried oxide, a pocket under source region and another under...  相似文献   
97.
Photonic Network Communications - This paper proposes an effective method for shaping the radiation pattern intensity of photonic crystal (PhC) light-emitting diode (LED). In this method, the...  相似文献   
98.
Cu(BDC) metal–organic framework (MOF) was used as a support for the copper (Cu) catalyst applied in the methanol steam reforming (MSR) process at low temperatures (130–250 °C) with a feed WHSV = 9.2 h?1 within the monolithic reactor. Also, the effects of diverse promoters were examined on the catalytic activities of the Cu/X–Cu(BDC) (X = Ce, Zn, Gd, Sm, La, Y, Pr) catalysts. Results showed that the Ce/Sm–Cu(BDC) supports exhibited highest activities, lowest reduction temperatures and largest specific surface areas, which caused highest distributions of the active copper metal nanoparticles on the supports. The reactor tests displayed that the activities of Cu/X–Cu(BDC) (X = Ce, Zn, Gd, Sm, La, Y, Pr) catalysts followed the order X = Ce > Sm > Y > La > Pr > Cu(BDC) > Zn > Gd. The highest activities of Ce and Sm containing catalysts were attributed to the presence of CeO2 and Sm2O3 caused the oxygen vacancies on the catalyst surface which had positive effects on the methanol reforming process. The time-on-stream stability tests showed the highest resistance of the Cu/Ce–Cu(BDC) catalyst to the carbon formation during 32 h. Consequently, the Cu/Ce–Cu(BDC) with the highest stability, methanol conversion and carbon monoxide selectivity could be used in practical industrial applications.  相似文献   
99.
Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.  相似文献   
100.
Chemical graph theory is a branch of mathematics which combines graph theory and chemistry. Chemical reaction network theory is a territory of applied mathematics that endeavors to display the conduct of genuine compound frameworks. It pulled the research community due to its applications in theoretical and organic chemistry since 1960. Additionally, it also increases the interest the mathematicians due to the interesting mathematical structures and problems are involved. The structure of an interconnection network can be represented by a graph. In the network, vertices represent the processor nodes and edges represent the links between the processor nodes. Graph invariants play a vital feature in graph theory and distinguish the structural properties of graphs and networks. In this paper, we determined the newly introduced topological indices namely, first -degree Zagreb index, first -degree Zagreb index, second -degree Zagreb index, -degree Randic index, -degree atom-bond connectivity index, -degree geometric-arithmetic index, -degree harmonic index and -degree sum-connectivity index for honey comb derived network. In the analysis of the quantitative structure property relationships (QSPRs) and the quantitative structureactivity relationships (QSARs), graph invariants are important tools to approximate and predicate the properties of the biological and chemical compounds. Also, we give the numerical and graphical representation of our outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号