首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4792篇
  免费   375篇
  国内免费   7篇
工业技术   5174篇
  2024年   6篇
  2023年   56篇
  2022年   64篇
  2021年   287篇
  2020年   171篇
  2019年   214篇
  2018年   213篇
  2017年   199篇
  2016年   219篇
  2015年   165篇
  2014年   263篇
  2013年   422篇
  2012年   359篇
  2011年   416篇
  2010年   280篇
  2009年   261篇
  2008年   246篇
  2007年   245篇
  2006年   159篇
  2005年   141篇
  2004年   137篇
  2003年   103篇
  2002年   92篇
  2001年   50篇
  2000年   49篇
  1999年   45篇
  1998年   54篇
  1997年   41篇
  1996年   26篇
  1995年   24篇
  1994年   19篇
  1993年   16篇
  1992年   17篇
  1991年   20篇
  1990年   11篇
  1989年   15篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
排序方式: 共有5174条查询结果,搜索用时 218 毫秒
991.
Carbon aerogels were prepared by carbonizing (at 500–1500 °C) organic aerogels obtained from the polymerization reaction of resorcinol and/or pyrocatechol with formaldehyde using boric and oxalic acids as polymerization catalysts. Prepared samples were characterized by different techniques to ascertain their composition, surface chemistry, morphology, and surface physics, determining their electrochemical capacitances in acidic medium. The use of pyrocatechol yielded carbon aerogels that were micro–mesoporous, showing Type IV N2 adsorption isotherms with Type H2 hysteresis cycles. The volume and size of mesopores depended on the acid catalyst used and the temperature at which the carbon aerogel was obtained. Conversely, the sample prepared with resorcinol and boric acid as catalyst was micro–macroporous and that obtained with a resorcinol–pyrocatechol mixture was micro–mesoporous but with large mesopores. Most of the boric acid used was lost during the exchange of water with acetone in the organic hydrogels before their supercritical CO2 drying. Carbon aerogels obtained at 900 °C and using boric acid as polymerization catalyst showed a capacitance between 17 and 24 μF/cm2. Boron influenced the capacitance because it increased the oxygen content. Sample synthesized using pyrocatechol, formaldehyde, and oxalic acid and heat-treated at 900 °C had the highest capacitance, 34 μF/cm2.  相似文献   
992.
In this paper, a study on the global gas holdup and hydrodynamic flow regimes developed in a partially aerated bubble column at variable air superficial velocities (UG) in the presence of positive and negative surfactants is presented. According to the results obtained, despite the different liquid phase properties variation caused by the presence of positive (alcohols) and negative (electrolytes) surfactants, both reduce coalescence and the effect in the gas holdup (εG) is equivalent: it increases with the surfactant concentration (C) but only when the (C/Ct) ratio is clearly above 1, being Ct the transition concentration. Contrary to the results obtained for totally aerated bubble columns, for lower values of the (C/Ct) ratio, the holdup remains practically invariable. Considering the crucial role that C and Ct play in the resulting εG, a new prediction equation for εG accounting for the ratio (C/Ct) and UG is presented and its performance for both types of surfactants validated. Additionally, visual and wall pressure fluctuations studies reveal that the vortical flow (VF), characterized by an oscillating bubble plume, prevails in ultrapure water (UPW) but results destabilized in the presence of surfactants. This destabilization results in an evolution to a pseudo-steady flow regime, the double cell turbulent flow regime (DCTF), characterized by a quasi-static bubble jet, located at the column centerline that determines the appearance of two static symmetrical vortices  相似文献   
993.
Gas detection experiments were performed with individual tin dioxide (SnO2) nanowires specifically configured to observe surface ion (SI) emission response towards representative analyte species. These devices were found to work at much lower temperatures (T≈280 °C) and bias voltages (V≈2 V) than their micro-counterparts, thereby demonstrating the inherent potential of individual nanostructures in building functional nanodevices. High selectivity of our miniaturized sensors emerges from the dissimilar sensing mechanisms of those typical of standard resistive-type sensors (RES). Therefore, by employing this detection principle (SI) together with RES measurements, better selectivity than that observed in standard metal oxide sensors could be demonstrated. Simplicity and specificity of the gas detection as well as low-power consumption make these single nanowire devices promising technological alternatives to overcome the major drawbacks of solid-state sensor technologies.  相似文献   
994.
995.
The microstructure of rubber-modified polystyrene after thermal ageing at 90 °C and multiple extrusion was analyzed by time-domain nuclear magnetic resonance (TD-NMR) in a non-destructive manner. The transverse magnetization decay behaviour observed in TD-NMR was related to the total rubber fraction and its cross-linking density. The data reveal different mechanisms of long-term rubber degradation in high-impact polystyrene (HIPS) during thermo-oxidation and multiple processing: Multiple processing causes a slight increase in the cross-linking density of the rubber phase, without appreciably altering the total amount of rubber fraction. Thermo-oxidation is accompanied by a significant overall decrease of the rubber fraction, an increase of the cross-linking density, and a pronounced increase of the non-crosslinked fraction (chain ends and fragmented segments). The NMR results correlate well with spectroscopic observations and moderately with macroscopic mechanical properties.  相似文献   
996.
The effectiveness of single oxidants and several AOPs was studied for the degradation of five selected emerging contaminants: Benzotriazole, N,N-diethyl-m-toluamide or DEET, Chlorophene, 3-Methylindole and Nortriptyline HCl. First-order rate constants and half-life times for the degradation of each compound in ultra-pure water were deduced and compared. The AOPs were later applied to the degradation of these ECs present in three real waters: public reservoir water, and two secondary effluents from municipal wastewater plants. The effect of the variables on the ECs elimination was established. Finally, a cost estimation based on the operating costs was established for the degradation of 3-Methylindole by the single oxidants and AOPs tested.  相似文献   
997.
Experiments for degradation of the extensively marketed Ponceau 4R dye in aqueous solution and for oxidation of raw wastewater from a confectionary industry have been carried out by using ozone. All the experiments were performed in a cylindrical semi-batch reactor at approximately 20 oC for 7200 s. A mass flow rate of 1.158?×?10?6 kg s?1 of ozone was continuously fed in the reactor. The pH of the azo dye aqueous solution (distilled water + Ponceau 4R) was always kept at approximately 5.8, while in the case of the raw wastewater the same factor was changed from 4.7 to 9.4 in two different experimental runs. Absorbance measurements at 508 nm show that the investigated azo dye found in the azo dye aqueous solution was completely degraded after only 600 s. At this initial period a substantial fall of TOC (Total Organic Carbon) (up to 45%) was noticed, but the rate was exponentially decreased at longer reaction times up to a TOC removal no higher than 60%. The ozonation was also responsible for reducing the apparent color of the raw wastewater to almost 10% of its initial value at the optimum pH (9.4 ± 1.5). The effect of pH was important on apparent color, but it had absolutely no influence on the kinetics results of COD (Chemical Oxygen Demand), which were kept constant over the entire period of reaction.  相似文献   
998.
Structured micrometric polystyrene/poly(methyl methacrylate) particles were obtained by suspension polymerization and their expansion behavior was investigated using n‐pentane as blowing agent. The expanded particles presented two distinct microstructures with an outer region (PMMA‐rich shell) composed by cells of about 10 µm while the center of the particle (PS‐rich core) had much larger cells (50–100 μm). The core–shell particles did not expand at 100°C meaning that the PMMA shell hindered the expansion of the particles. Maximum expansion was dependent on the PMMA concentration and also on the heating temperature and the increase in the PMMA molar mass led to a delay in the onset of the process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4521–4527, 2013  相似文献   
999.
1000.
New advances in colloidal and other self-assembly synthetic methods have afforded the controlled growth of nanoparticles with well-defined sizes and shapes. Recently, the catalysis community has been trying to capitalize on this knowledge for the design of new catalytic processes. In particular, the use of metal nanoparticles with specific shapes has been explored in several instances as a way to control reaction selectivity. Here we review the results from our efforts to use platinum nanoparticles dispersed on high-surface-area supports to perform selective olefin conversions. Emphasis is given to the surface-science experiments and quantum-mechanics calculations that led us to identify potential variations in selectivity in carbon–carbon double-bond isomerization and hydrogenation reactions with the structure of the metal surface. Temperature programmed desorption (TPD) and reflection–absorption infrared spectroscopy data for 2-butenes adsorbed on Pt(111) single-crystal surfaces highlighted the relative higher stability of adsorbed cis-2-butene compared to trans-2-butene and the preference for the promotion of trans-to-cis conversions on that surface. It was also determined that coadsorbed hydrogen plays a key role in defining the relative stabilities of the adsorbates, favoring pi rather than di-sigma bonding and reversing the higher stability of the trans adsorbates seen on clean Pt(111). DFT calculations suggested that such unique results may be accounted for by the need for extensive surface reconstruction to accommodate the adsorbates on such flat planes, a requirement that appears to be less severe with the cis isomer. TPD experiments on stepped Pt(557) surfaces pointed to the minimal importance of steps in promoting these isomerization reactions, although they do seem to help with the full hydrogenation to the alkanes. More extensive olefin adsorption destabilization with hydrogen coadsorption and faster alkane production was seen on Pt(100), but selectivity towards the cis isomer was still identified. On the more open (2 × 1)-reconstructed Pt(110) surface, on the other hand, trans-2-butene is the most stable of the two isomers. It was finally shown that these surface-science results translate into changes in selectivity in real catalysts with platinum nanoparticle shape. Catalysts were prepared by using colloidal Pt nanoparticles with tetrahedral, cubic, and rounded shapes, and unique selectivity toward cis-2-butene formation was measured on the first of those samples. It appears that the (111) facets exposed by the tetrahedral Pt nanoparticles do show the same trans-to-cis conversion preference in catalysis seen in the surface-science studies carried out with single-crystal surfaces and under ultrahigh vacuum conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号