首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   23篇
工业技术   356篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   13篇
  2020年   2篇
  2019年   8篇
  2018年   16篇
  2017年   8篇
  2016年   17篇
  2015年   15篇
  2014年   11篇
  2013年   29篇
  2012年   9篇
  2011年   18篇
  2010年   16篇
  2009年   14篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   8篇
  2004年   7篇
  2003年   11篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   30篇
  1997年   17篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1978年   1篇
  1976年   5篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
351.
In the present paper, single‐wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally and to obtain an estimate of the wake expansion in a fixed frame of reference. A comparison shows good agreement between the measured average expansion and the Computational Fluid Dynamics (CFD) large eddy simulation–actuator line computations. Frandsen's expansion model seems to predict the wake expansion fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single‐wake expansion is proposed based on an initial wake expansion in the pressure‐driven flow regime and a spatial gradient computed from the large‐scale lateral velocities, and thus inspired by the basic assumption behind the dynamic wake meandering model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
352.
The study presents and compares aerodynamic simulations for an airfoil section with an adaptive trailing edge flap, which deflects following a smooth deformation shape. The simulations are carried out with three substantially different methods: a Reynolds‐averaged Navier–Stokes solver, a viscous–inviscid interaction method and an engineering dynamic stall model suitable for implementation in aeroelastic codes based on blade element momentum theory. The aerodynamic integral forces and pitching moment coefficients are first determined in steady conditions, at angles of attack spanning from attached flow to separated conditions and accounting for the effects of flap deflection; the steady results from the Navier–Stokes solver and the viscous–inviscid interaction method are used as input data for the simpler dynamic stall model. The paper characterizes then the dynamics of the unsteady forces and moments generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady‐state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among the investigated methods at attached flow conditions, both for airfoil pitching and flap deflection. At high angles of attack, where flow separation is encountered, the methods still depict similar overall dynamics, but larger discrepancies are reported, especially for the simpler engineering method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
353.
Adaptation to climate change for food security in the lower Mekong Basin   总被引:3,自引:0,他引:3  
Variability in water cycles driven by climate change is considered likely to impact rice production in the near future. Rice is the main staple food for the population in the lower Mekong Basin and the demand for food is expected to grow due to increase in population. This paper examines the impact of climate change on rice production in the lower Mekong Basin, evaluates some widely used adaptation options, and analyses their implications for overall food security by 2050. Climate change data used in the study are the future climate projection for two IPCC SRES scenarios, A2 and B2, based on ECHAM4 General Circulation Model downscaled to the Mekong region using the PRECIS (Providing Regional Climates for Impact Studies) system. In general, the results suggest that yield of rainfed rice may increase significantly in the upper part of the basin in Laos and Thailand and may decrease in the lower part of the basin in Cambodia and Vietnam. Irrigated rice may not be affected by climate change if increased irrigation requirements are met. Negative impact on the yield of rainfed rice can be offset and net increase in yield can be achieved by applying widely used adaptation options such as changing planting date, supplementary irrigation and increased fertilizer input. Analysis of the projected production, considering population growth by 2050, suggests that food security of the basin is unlikely to be threatened by the increased population and climate change, excluding extreme events such as sea level rise and cyclones.  相似文献   
354.
In laboratory bioassays, Porapak Q-captured and steam-distilled volatiles from the bark of host trees, Abies grandis, particularly from root-rot-infected trees, attracted 50–70% of male and female fir engravers, Scolytus ventralis. Gas chromatographic–electroantennographic detection (GC-EAD) analyses of Porapak Q-captured bark volatiles revealed 19 EAD-active compounds of which 13 (mostly monoterpenes) were identified by GC–mass spectrometry (GC-MS). In separate field experiments, multiple-funnel traps baited with two blends of these 13 synthetic volatiles released at 280 and 340 mg/ 24 hr attracted 66 and 93% of the total S. ventralis captured, respectively. The clerid predator, Thanasimus undulatus, also responded strongly to the kairomonal volatiles. Additional experiments produced no evidence for aggregation pheromones in S. ventralis. These included laboratory bioassays and GC and GC-EAD analyses of Porapak Q-captured volatiles from male- and female-infested logs or trees undergoing mass attack in the field, GC analyses and/or bioassays of extracts from female accessory glands, extracted volatiles from emerged, attacking and juvenile hormone-treated beetles of both sexes, and videotape analysis of the behavior of attacking beetles on the bark surface. We argue against the hypothesis of pheromone-mediated secondary attraction in S. ventralis and conclude that the attack dynamics of this species can be explained solely by its sensitive primary attraction response to host volatiles.  相似文献   
355.
A row of wind turbine rotors with a mutual spacing of three diameters is simulated using both Reynolds averaged Navier‐Stokes (RANS) simulations and a simple inviscid vortex model. The angle between the incoming wind and the line connecting the turbines is varied between 45 and 90 degrees. The simulations show that the power production of the turbines deviate significantly compared with a corresponding isolated turbine even though there is no direct wake‐turbine interaction at the considered wind directions. Nevertheless, both models indicate marked alterations in the upstream flow, which directly link to the turbines' power adjustments. Thus, turbines which are placed laterally relative to the prevailing wind (as seen at various test sites) have, at least numerically, a mutual effect on each other. Therefore, they might not necessarily produce the same power as a stand‐alone turbine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
356.
Osteons, the main organizational components of human compact bone, are cylindrical structures composed of layers of mineralized collagen fibrils, called lamellae. These lamellae have different orientations, different degrees of organization, and different degrees of mineralization where the intrafibrillar and extrafibrillar minerals are intergrown into one continuous network of oriented crystals. While cellular activity is clearly the source of the organic matrix, recent in vitro studies call into question whether the cells are also involved in matrix mineralization and suggest that this process could be simply driven by the interactions of the mineral with extracellular matrix. Through the remineralization of demineralized bone matrix, the complete multiscale reconstruction of the 3D structure and composition of the osteon without cellular involvement are demonstrated. Then, this cell-free in vitro system is explored as a realistic, functional model for the in situ investigation of matrix-controlled mineralization processes. Combined Raman and electron microscopy indicate that glycosaminoglycans (GAGs) play a more prominent role than generally assumed in the matrix–mineral interactions. The experiments also show that the organization of the collagen is in part a result of its interaction with the developing mineral.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号