首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   32篇
  国内免费   6篇
工业技术   847篇
  2024年   4篇
  2023年   14篇
  2022年   33篇
  2021年   51篇
  2020年   42篇
  2019年   25篇
  2018年   40篇
  2017年   49篇
  2016年   31篇
  2015年   26篇
  2014年   56篇
  2013年   73篇
  2012年   43篇
  2011年   47篇
  2010年   48篇
  2009年   33篇
  2008年   36篇
  2007年   29篇
  2006年   23篇
  2005年   13篇
  2004年   10篇
  2003年   15篇
  2002年   10篇
  2001年   12篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   8篇
  1991年   2篇
  1990年   5篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   5篇
排序方式: 共有847条查询结果,搜索用时 0 毫秒
831.
We report a novel synthetic approach for the attachment of the polyazido nitrogen rich molecule on to the hydroxyl terminated polybutadiene (HTPB) backbone. The terminal carbon atoms of the HTPB are functionalized by attaching cyanuric chloride (CYC) covalently on the HTPB backbone. Further reaction of this modified HTPB with sodium azide yields polyazido nitrogen rich HTPB. The unique physico-chemical properties and the microstructure of the HTPB do not get affected upon modification. IR, gel permeable chromatography (GPC) and absorption spectroscopy studies prove that the polyazido nitrogen rich molecules are covalently attached at the terminal carbon atoms of the HTPB. The π electron delocalization owing to long butadiene chain, strong electron withdrawing effect of the triazine molecules are the major driving forces for the covalent attachment of the triazine at the terminal carbon atoms of the HTPB. The disruption of the intermolecular hydrogen bonding between the terminal hydroxyl groups of the HTPB chains and the presence of hydrogen bonding between the N atoms of the triazine ring with OH group of the HTPB are observed. Theoretical study also reveals the existence of the hydrogen bonding between the OH and N. Theoretical calculation shows that the detonation performance of the polyazido nitrogen rich HTPB are very promising.  相似文献   
832.
2-Chlorophenol (2-CP) degrading aerobic granules were cultivated in a sequencing batch reactor (SBR) in presence of glucose. The organic loading rate (OLR) was increased from 6.9 to 9.7 kg COD m(-3)d(-1) (1150-1617 mg L(-1)COD per cycle) during the experiment. The alkalinity (1000 mg L(-1) as CaCO(3)) was maintained throughout the experiment. The specific cell growth rate was found to be 0.013 d(-1). A COD removal efficiency of 94% was achieved after steady state at 8h HRT (hydraulic retention time). FTIR, UV, GC, GC/MS studies confirmed that the biodegradation of 2-CP occurs via chlorocatechol (modified ortho-cleavage) pathway. Biodegradation kinetics followed the Haldane model with kinetic parameters: V(max)=840 mg2-CPgMLVSS(-1)d(-1), K(s)=24.61 mg L(-1), K(i)=315.02 mg L(-1). Abiotic losses of 2-CP due to volatilization and photo degradation by sunlight were less than 3% and the results of genotoxicity showed that the degradation products are eco-friendly.  相似文献   
833.
An electrochemical route to synthesize CuO thin films with nano-whiskers like structure, from a metallic Cu precursor is reported. Structural characterization showed the formation of cubic phase for both the Cu and CuO films, whereas, the grains were found to change their shapes from cubic to nano-whiskers as an effect of annealing (in air at 600 °C for 30 min). X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis, Photoluminescence (PL) and Raman analyses were carried out with the films. The photocatalytic activity of the prepared CuO films was determined by measuring the degradation of Rose Bengal (RB) dye, to find out its potential application in waste water treatment.  相似文献   
834.
A straightforward oxidative liquid phase polymerization (LPP) method has been successfully developed for the fabrication of spherical functional (polyCOOH) polycarbazole-based microparticles from corresponding carbazole-containing monomers. The influence of the chemical structure of starting carbazole monomers on the LPP-based microparticle formation has been deeply examined using scanning electron microscopy (SEM).  相似文献   
835.
The corrosion inhibition of metallic substrates is a prime issue for many potential applications where corrosion plays a crucial role. The development of carbon based on functionalized coatings could increase the lifetime of metallic substrates by inhibiting the corrosion process. Present work is an effort to develop a corrosion inhibiting composite coating of graphene oxide and polypyrrole for AISI (American Iron and Steel Institute) type 304 stainless steel substrates. The electrochemical galvanostatic deposition process was applied for coating development. The coating morphology and ability to cover the substrate surface was analyzed with a high-resolution scanning electron microscope. The coating's structural and electronic properties were analyzed with Raman spectroscopy. The investigation of corrosion inhibition involved open circuit potential, Tafel, and voltammetry analysis. The standard salt test ASTM (American Society for Testing and Materials) G48A for stainless steel substrate has also been studied. Significant enhancement of corrosion potential as well as pitting potential for the composite coated substrates has been noted. Furthermore, corrosion and breakdown potential increased upon changing the material from graphene oxide to its composite coating. During the salt test analysis, the durability of the composite coating was noted up to 72 h, which is the standard time scale. Based on experimental analysis, this composite material can be used as an effective carbon based on functionalized corrosion inhibitor for stainless steel substrates to increase their lifetime.  相似文献   
836.
The nanocomposite CeO2/Y2O3 partially stabilized zirconia (Ce‐PSZ/Y‐PSZ)‐toughened alumina was prepared by wet chemical simultaneous coprecipitation process. The thermal stability of phases and morphology of powders were characterized by TG‐DTA, FTIR, and FESEM. The microstructure, stabilization of phases and compositional analysis with different mol% CeO2/Y2O3‐doped zirconia in alumina are characterized by FESEM, XRD, and EDAX spectra. Significant improvement in fracture toughness and flexural strength has been observed in 10 vol% of partially stabilized zirconia (2.5 mol% Y2O3 in ZrO2/9 mol% CeO2 in ZrO2)‐toughened alumina, which is suitable for high‐speed machining applications.  相似文献   
837.
The waste material NCL coal dust was used as adsorbent for removal of Cr(VI) from aqueous solutions under batch adsorption experiments. The maximum removal of 99.97% was recorded at pH 2. The time required to attain equilibrium was found to be 60 min. Adsorption kinetics was described by the Lagergren equation. The value of the rate constant of adsorption was found to be 0.0615 min?1 at 16 mg dm?3 initial concentration and 298 K. The applicability of the Langmuir and Freundlich equations for the present system was also tested at different temperatures: 298, 313, and 328 K. Both thermodynamic parameters and temperature dependence indicated the endothermic nature of Cr(VI) adsorption on coal dust. The results showed that NCL coal dust is a promising adsorbent for the removal of Cr(VI) from aqueous solutions.  相似文献   
838.
TPVs are prepared by dynamic vulcanization in which crosslinking of an elastomeric polymer takes place during its melt mixing with a thermoplastic polymer under high‐shear conditions. 30:70 wt% blends of PP and ethylene–octene copolymer are vulcanized using electron‐induced reactive processing (EIReP) employing a range of absorbed doses (25, 50, and 100 kGy) while keeping the electron energy and treatment time fixed. The structure/property relationships of the prepared samples are studied using various characterization techniques such as DMA, DSC, SEM, and melt rheology. The results suggest that EIReP offers a novel route to prepare TPVs without any chemical crosslinking and coupling agents.

  相似文献   

839.
Gold nanoclusters are promising candidates as biological markers without having toxic effects like fluorescent quantum dots. Herein, bovine serum albumin (BSA) protein stabilized gold nanoclusters of two different sizes emitting at 410 and 645 nm have been synthesized. These nanoclusters have been shown to interact with molecular oxygen differentially. Spectroscopic and chemical evidences show that dioxygen molecule gets adsorbed at two different orientations on the nanoclusters. The orientation motifs have been hypothesized to be superoxo and peroxo types on the smaller and the larger gold nanoclusters, respectively. Due to the difference in attachments, the oxygen molecule shows opposite changes in fluorescence intensity for the nanoclusters. The fluorescence intensity of the blue emitting nanocluster shows a profuse enhancement whereas the red emitting species shows quenching of emission. Superoxo type adsorption of the oxygen molecule on the blue emitting gold nanoclusters induce formation of singlet oxygen that in turn enhances the fluorescence intensity of the species. This could be verified by oxidation of diaminobenzidine (DAB) by singlet oxygen. Enhancement in fluorescence intensity of the blue emitting gold nanoclusters with an increase in concentration of molecular oxygen may enable them to be good candidates in bioimaging and detection.  相似文献   
840.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号