首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   29篇
工业技术   545篇
  2024年   3篇
  2023年   10篇
  2022年   9篇
  2021年   21篇
  2020年   21篇
  2019年   12篇
  2018年   18篇
  2017年   22篇
  2016年   24篇
  2015年   10篇
  2014年   9篇
  2013年   40篇
  2012年   40篇
  2011年   43篇
  2010年   48篇
  2009年   45篇
  2008年   44篇
  2007年   34篇
  2006年   33篇
  2005年   12篇
  2004年   6篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
排序方式: 共有545条查询结果,搜索用时 796 毫秒
71.
72.
Different samples of xTeO2.(25-y)B2O3.zV2O5.yYb2O3 (or TBVY) new glass material were synthesized by the classical melt-quenching method. Structural, optical, physical, and thermal analyses of the synthesized glasses were performed in addition to Monte Carlo simulation to test radiation shielding properties. The results showed that increasing ratios of Yb2O3 (y = 0.0, 0.5, 1.0, and 1.5 mol%) produced monotonic density values of the synthesized glasses ranging from 4.70058 g cm?3 to 5.01038 g cm?3. XRD and FTIR analyses were used to confirm the glass structure of all samples. Optical transmittance and absorption parameters varied almost monotonically with increasing ratios of Yb2O3 indicating the ability to predict and control these properties using Yb2O3 additive. Furthermore, simulated radiation interaction parameters, such as attenuation coefficients and half-value layer, exhibited well-behaved dependence on the concentration ratio of the Yb2O3 additive. This approach to glass material synthesis demonstrate the useful synergetic effect of combining structural, optical, and radiation characteristics.  相似文献   
73.
Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device. Here, the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response, compared to conventional tin‐doped indium oxide (ITO) electrodes, are shown. Optimized IZRO films feature a very high electron mobility (up to ≈77 cm2 V?1 s?1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω □?1 for annealed 100 nm films). For devices, this translates in a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO. Fundamentally, it is found that the high conductivity of annealed IZRO films is directly linked to promoted crystallinity of the indium oxide (In2O3) films due to Zr‐doping. Overall, on a four‐terminal perovskite/silicon tandem device level, an absolute 3.5 mA cm?2 short‐circuit current improvement in silicon bottom cells is obtained by replacing commercial ITO electrodes with IZRO, resulting in improving the PCE from 23.3% to 26.2%.  相似文献   
74.
Defects at the surface and grain boundaries of metal–halide perovskite films lead to performance losses of perovskite solar cells (PSCs). Here, organic cyano‐based π‐conjugated molecules composed of indacenodithieno[3,2‐b]thiophene (IDTT) are reported and it is found that their cyano group can effectively passivate such defects. To achieve a homogeneous distribution, these molecules are dissolved in the antisolvent, used to initiate the perovskite crystallization. It is found that these molecules are self‐anchored at the grain boundaries due to their strong binding to undercoordinated Pb2+. On a device level, this passivation scheme enhances the charge separation and transport at the grain boundaries due to the well‐matched energetic levels between the passivant and the perovskite. Consequently, these benefits contribute directly to the achievement of power conversion efficiencies as high as 21.2%, as well as the improved environmental and thermal stability of the PSCs. The surface treatment provides a new strategy to simultaneously passivate defects and enhance charge extraction/transport at the device interface by manipulating the anchoring groups of the molecules.  相似文献   
75.

Equivalent circuit models have been long used to evaluate the dynamics of the capacitive micromachined ultrasonic transducer (CMUT). An important parameter in the characterization of a CMUT is the anti-resonance frequency, which limits the immersion bandwidth. However, there is no equivalent circuit model that can accurately determine the anti-resonance frequency of a membrane. In this work, we present an improved lumped element parametric model for immersed CMUT. We demonstrate that the proposed equivalent circuit model accurately predicts anti-resonance and higher order mode frequencies, in addition to that of the fundamental mode. The proposed circuit model is in good agreement with device characteristics calculated using the finite element method and experimentally measured data.

  相似文献   
76.
Potential modulated attenuated total reflectance (PM-ATR) spectroscopy has been employed to study charge transfer processes in Prussian blue (PB) films deposited on indium tin oxide (ITO) electrodes. PM-ATR is a planar waveguide-based spectroelectrochemical technique in which the optical response of an electroactive film is measured as a function of applied potential and modulation frequency. The multiple internal reflection geometry of PM-ATR provides a significant sensitivity advantage over the single external reflectance geometry that has been employed in most prior electroreflectance studies. The apparent electron transfer rate of PB on ITO obtained using PM-ATR was compared to that obtained with conventional cyclic voltammetry; the respective rates, 0.33 ± 0.15 s−1 (n = 3) and 0.71 ± 0.37 s−1 (n = 10), are in good agreement.  相似文献   
77.
Here, we introduce a new bonding technique that enables the joining of different materials at low temperatures and provides a bond superior to that of polymer adhesives at high temperatures, in temperature ranges between 250°C and 500°C. This technique involves a low temperature sintering process that is termed the “Cold Sintering Process,” where a dielectric composite powder material is sintered to function as the adhesive between two other materials being bonded. In order to characterize and further discuss the potential of this new bonding methodology, which we call Cold Sintering Ceramic Bonding (CSCB), we demonstrate the initial mechanical characteristics of samples with sandwich structures of mesh/CSCB/mesh, including four‐point bending, micro‐indentation, and adhesion pull tests. Where appropriate, we compare mechanical properties against low and high temperature epoxies and demonstrate that the CSCB matches up competitively with the epoxies at low temperatures and remains strong at temperatures well above those where standard polymer adhesives fail. Transmission electron microscopy show a high quality interface between a stainless steel plate and the ceramic after the CSCB.  相似文献   
78.
79.
Removal of copper ions from aqueous solutions by kaolinite and batch design   总被引:2,自引:0,他引:2  
The removal of copper ions from aqueous solutions by kaolinite was investigated by using a batch-type method. Effects of factors such as pH, ionic strength, temperature, acid-activation and calcination on copper adsorption were investigated. The uptake of copper was determined from changes in concentration as measured by atomic absorption spectrometry. The extent of copper adsorption increased with increasing pH and temperature and with decreasing ionic strength, acid-activation and calcination temperature. The Langmuir and Freundlich adsorption models were used to determine the isotherm parameters associated with the adsorption process. The results provide support for the adsorption of copper ions onto kaolinite. Thermodynamic parameters indicated the endothermic nature of copper adsorption on kaolinite. The experimental results were applied a batch design. As a result, the kaolinite may be used for removal of copper ions from aqueous solutions.  相似文献   
80.
Removal of copper ions from aqueous solutions by hazelnut shell   总被引:1,自引:0,他引:1  
There is a great potential of woody hazelnut shell to use in some applications. Sorption studies are one of these. For this reason in this paper, batch adsorption of Cu(2+) ions onto hazelnut shells was studied. The capacity of the adsorption for the removal of copper ions from aqueous solution was investigated under different conditions such as solution contact time (1-360 min), particle size (0-75, 75-150 and 150-200 microm), temperature of solution (25-60 degrees ) and solution pH (3-7). Moreover, zeta potential of particles at different initial pHs (2-10) was measured. The equilibrium data were processed according to Langmuir and Freundlich's models and higher adsorption capacity values towards Cu(2+) ions were shown. The adsorption kinetics was investigated and the best fit was achieved by a second-order equation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号