首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   7篇
  国内免费   38篇
工业技术   92篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2015年   2篇
  2014年   9篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   4篇
  2005年   3篇
  2004年   9篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  1996年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有92条查询结果,搜索用时 343 毫秒
61.
岩石试样围压下直接拉伸试验   总被引:1,自引:0,他引:1  
圆盘试样巴西劈裂是在拉压应力联合作用下破裂的,Griffith准则认为压应力小于3倍抗拉强度则对岩石拉伸破坏没有影响,这些问题都需要直接的试验验证.在50 mm×100mm试样两端粘结80 mm的拉头,置入液压缸中施加围压,拉头承受轴向载荷引起岩样拉伸;同时利用伺服试验机对拉头施加轴向压缩载荷,平衡其承受的部分拉伸载荷.通过改变轴向压缩载荷的数值,就可以得到不同围压下岩样的拉伸强度.尽管试验结果具有相当的离散性,但完全可以确认岩样拉伸强度随围压增大而减小,巴西劈裂强度低于岩石单向拉伸强度.岩石在压拉应力作用下发生的拉伸破坏可以利用应力之间的线性关系描述.  相似文献   
62.
介绍了在狭小场地条件下,烟道口背离烟囱倾倒方向的定向爆破拆除方法.  相似文献   
63.
平台巴西圆盘劈裂和岩石抗拉强度的试验研究   总被引:7,自引:7,他引:7  
在巴西圆盘试样中引进平台作为加载面,可以改善加载处的应力状态。利用有限元计算平台巴西圆盘均匀位移压缩时,随着平台中心角的增大,圆盘中心的拉应力降低,压、拉应力比增大,应用Griffith准则能否确定岩石的抗拉强度以及应该如何选择平台中心角需要研究。对花岗岩、砂岩、石灰岩和辉绿岩,以中心角20°~90°的平台巴西圆盘进行劈裂试验,圆盘不是沿中心线破坏,且抗拉强度随平台中心角增大而增大。原因有两个,一是Griffith准则过高地估计了抗拉强度,二是试验机压头与平台之间存在摩擦。垫入0.5mm厚聚四氟乙烯薄片可使平台圆盘沿中心线破裂,但垫片侧向变形大于岩石,平台受到指向外侧的摩擦力,使得圆盘强度随中心角的增大而降低。单轴压缩强度高达240MPa的花岗岩,其劈裂强度(13MPa)与平台圆盘的劈裂强度相当,其余3种岩石完整圆盘的劈裂强度明显偏低,说明集中载荷造成的影响不容忽视。综合考虑摩擦效应和平台加工质量的影响,圆盘中心角以20°~30°为宜。  相似文献   
64.
大理岩颗粒及试样尺寸对冲击倾向影响的试验研究   总被引:2,自引:0,他引:2  
试样的冲击倾向是反映岩石发生冲击地压难易程度的重要参数。对4种不同颗粒和5种长径比的大理岩试样进行了单轴压缩试验,通过分析应力.应变全程曲线发现,大理岩冲击倾向指标Et/ER随矿物颗粒的增大而逐渐增大,随试样长径比的增大却逐渐减小,这种趋势随颗粒和长径比的变化而逐渐变缓,不同颗粒的大理岩表现程度有所不同。大理岩强度随试样长径比的增大逐渐减小,试样强度与颗粒的关系比较复杂,没有明显的规律。  相似文献   
65.
岩石的非均质性与杨氏模量的确定方法   总被引:4,自引:3,他引:4  
岩样杨氏模量的数值依赖于确定方法,通常离散性很大。岩层钻孔取芯时岩样会因三轴伸长作用产生分布裂隙,在单轴压缩初期产生闭合、滑移,使应力-应变曲线下凸。因此,从原点计算的割线模量不能反映实际岩体的变形特征。平均模量是应力-应变曲线中近似直线部分的斜率,受试验条件的影响较小,表示了应力与应变的变化关系,但其计算方法不够明确。建议使用最大割线模量,应力差为岩样强度一半的所有割线模量的最大值。此外,从岩层钻孔取得的岩样具有串联特征,应采用其杨氏模量的调和平均值表示岩体的变形特征。该值可以反映岩层局部的软弱结构对整体变形的控制作用。  相似文献   
66.
大理岩试样的长度对单轴压缩试验的影响   总被引:13,自引:10,他引:13  
相同直径试样的单轴压缩强度随长度的减小而增加,而使用柔性垫片强度则随长度的减小而减小,表明试验机压头与试样端面之间存在摩擦,其影响程度随岩性而变化。2块粒径为0.5~1mm的细品大理岩,试样长度对强度的影响相同,长径比为1时强度是标准长度试样的130%,长径比为0.6时增大到150%以上。但两者的强度、杨氏模量不同,且强度较高者存在圆锥破裂面,强度较低者呈平面剪切破裂,破坏形式都与试样长度无关。粒径为5mm的粗晶大理岩,试样强度随长度变化不很明显,长径比小于2.5的试样的峰后应力降低过程大体相似。这与裂纹扩展受晶粒影响较大、缺少明显的主控破裂面有关。利用厚度为0.5mm的聚四氟乙烯垫片(使用前预压两次),直径为50mm、长度小于50mm的试样也能得到标准试样的单轴压缩强度。不过,试样长度减小时端面质量对强度和杨氏模量的影响增大。  相似文献   
67.
考虑尺寸效应的岩石损伤统计本构模型研究   总被引:5,自引:1,他引:5  
基于岩石的应变强度理论和岩石强度的随机统计分布假设,采用损伤力学理论,考虑微元体破坏及弹性模量与尺寸之间的非线性关系,建立了单轴压缩下考虑尺寸效应的岩石损伤统计本构模型。然后采用伺服试验机对不同尺寸大理岩石进行了单轴压缩试验研究,得到了不同尺寸大理岩样试验结果;讨论了材料力学参数与尺寸之间的关系,给出了考虑尺寸效应的岩石损伤统计本构模型参数。预测的不同尺寸岩石理论曲线和试验结果相比较,显示了所建模型的合理性。最后探讨了岩石尺寸对损伤特性的演化规律。  相似文献   
68.
平台圆盘劈裂的理论和试验   总被引:9,自引:3,他引:9  
圆盘试样的劈裂试验可以确定岩石的抗拉强度,不过由于压条与试样接触处的压应力极高引起岩石的屈服碎裂,与试验原理不符。在圆盘试样中引进两个平台作为加载面,可以改善加载处的应力状态。实际试验时平台圆盘是压缩位移加载,内部的应力分布与均布载荷作用时不同。基于有限元计算,给出压缩位移加载状态下抗拉强度、压缩位移公式中的修正系数。在作用合力一定时,随平台张角的增大圆盘中心的拉应力降低,而压拉应力比增大,因而为了求得真正的岩石抗拉强度,平台张角不宜过大。又考虑到平台加工的和压缩加载的方便,建议选择30°左右。试样通常不会沿对称轴劈裂,试验机是位移控制加载,利用平台圆盘劈裂试验确定岩石断裂韧度KIc是困难的。  相似文献   
69.
大理岩劈裂抗拉强度具有较大的离散性,并受非均质性、劈裂形式及尺寸效应等多种因素影响.采用钢丝垫条形式的大理岩劈裂抗拉强度离散度小于采用钢平板形式的离散度;大理岩劈裂抗拉强度值越高,其离散度越小;采用钢丝垫条形式的劈裂抗拉强度在总趋势上随厚度的增加先增加后减小;而采用平板形式的劈裂抗拉强度随厚度的增加而减小.  相似文献   
70.
混凝土试样经历200~1 000℃高温作用后,用洒水冷却或自然冷却,利用RMT-150B岩石力学试验系统对其进行巴西劈裂和单轴压缩试验.研究其纵波波速、抗压强度、抗拉强度、平均模量以及极限应变等与经历高温之间的关系.试验结果表明,试样抗压强度、抗拉强度、平均模量、纵波波速随温度的升高而降低,峰值应变则随温度的升高而增大;抗拉强度、抗压强度与温度的关系用指数函数表征,平均模量与高温的关系用乘幂函数表征;纵波速度与强度、平均模量成正相关,具有一定的统计关系.冷却方式对抗压强度、抗拉强度、平均模量、峰值应变以及破坏特征影响不明显.试验结果为预测和评估混凝土火灾后的稳定性和安全性以及修复加固设计提供参考依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号