首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
工业技术   14篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2015年   3篇
  2013年   3篇
  2011年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 125 毫秒
11.
12.
Additive manufacturing has revolutionized the building of materials, and 3D-printing has become a useful tool for complex electrode assembly for batteries and supercapacitors. The field initially grew from extrusion-based methods and quickly evolved to photopolymerization printing, while supercapacitor technologies less sensitive to solvents more often involved material jetting processes. The need to develop higher-resolution multimaterial printers is borne out in the performance data of recent 3D printed electrochemical energy storage devices. Underpinning every part of a 3D-printable battery are the printing method and the feed material. These influence material purity, printing fidelity, accuracy, complexity, and the ability to form conductive, ceramic, or solvent-stable materials. The future of 3D-printable batteries and electrochemical energy storage devices is reliant on materials and printing methods that are co-operatively informed by device design. Herein, the material and method requirements in 3D-printable batteries and supercapacitors are addressed and requirements for the future of the field are outlined by linking existing performance limitations to requirements for printable energy-storage materials, casings, and direct printing of electrodes and electrolytes. A guide to materials and printing method choice best suited for alternative-form-factor energy-storage devices to be designed and integrated into the devices they power is thus provided.  相似文献   
13.
Fourier transform infrared (FT-IR) spectroscopy and chemometrics were used to verify the origin of honey samples (n=150) from Europe and South America. Authentic honey samples were collected from five sources, namely unfiltered samples from Mexico in 2004, commercially filtered samples from Ireland and Argentina in 2004, commercially filtered samples from the Czech Republic in 2005 and 2006, and commercially filtered samples from Hungary in 2006. Samples were diluted with distilled water to a standard solids content (70 degrees Brix) and their spectra (2500-12 500 nm) recorded at room temperature using an FT-IR spectrometer equipped with a germanium attenuated total reflection (ATR) accessory. First- and second-derivative and standard normal variate (SNV) data pretreatments were applied to the recorded spectra, which were analyzed using partial least squares (PLS) regression analysis, factorial discriminant analysis (FDA), and soft independent modeling of class analogy (SIMCA). In general, when an attenuated wavelength range (6800-11 500 nm) rather than the whole spectrum (2500-12 500 nm) was studied, higher correct classification rates were achieved. An overall correct classification of 93.3% was obtained for honeys by PLS discriminant analysis, while FDA techniques correctly classified 94.7% of honey samples. Correct classifications of up to 100% were achieved using SIMCA, but models describing some classes had very high false positive rates.  相似文献   
14.
This study quantified the contributions of different P removal pathways in an integrated constructed wetland (ICW) treating domestic wastewater. Findings over the study period (February 2008 to March 2012) showed average P retention rates of 31 ± 2 mg/m2/day for molybdate reactive phosphate (MRP) and 40 ± 3 mg/m2/day for total P. Near complete P removal was achieved during the first 2 years of operation. Thereafter, effluent concentrations increased slightly. According to the mass balance estimation, assimilation by plants accounted for approximately 16% of the total P retained, while sediment storage contributed nearly 60%. Sediment storage was the major P removal pathway in the ICW. Thus, high effluent concentrations recorded during high effluent flow volumes was due to remobilisation of P from the sediment. Management of ICW systems may therefore require implementing sediment removal schemes. The combination of plants with high biomass production can be beneficial for improving ICW performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号