首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   5篇
  国内免费   3篇
工业技术   178篇
  2024年   2篇
  2023年   4篇
  2022年   3篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   8篇
  2011年   13篇
  2010年   15篇
  2009年   22篇
  2008年   11篇
  2007年   14篇
  2006年   10篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   8篇
  2001年   11篇
  2000年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
121.
采用一种新型的粉末触变锻造技术制备了2024铝合金,采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)等分析手段,研究了固溶温度对粉末触变锻造2024铝合金和金属型铸造2024铝合金显微组织和力学性能的影响。研究表明:随着固溶温度的升高,粉末触变锻造2024铝合金的抗拉强度、屈服强度、伸长率都逐渐增加,在490℃×3h时,综合力学性能达到最佳,其抗拉强度、屈服强度和伸长率分别为350MPa,270MPa和17.5%;金属型铸造2024铝合金最佳固溶工艺为490℃×12h,其抗拉强度、屈服强度和伸长率分别达到320MPa,245MPa和15.2%;相比金属型铸造2024铝合金,粉末触变锻造2024铝合金的抗拉强度、屈服强度和伸长率分别提高了9.4%,10.2%和15.1%。  相似文献   
122.
The microstructural evolution characteristics of thermo-mechanically affected zone were investigated during friction stir processing (FSP) of the thixoformed AZ91D alloy. Simultaneously, an Al-rich surface layer was prepared by combination of Al powder using FSP method. The results indicate that the dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are the main mechanisms of grain refinement. For the thixoformed alloy, the operation efficiency of these mechanisms is less than that of the permanent mould casting AZ91D alloy, thus its microstructural evolution is relatively slow and the resulting grain size is relatively large. These are attributed to the differences in their original microstructures. The Al-rich surface layer can obviously improve the corrosion resistance in NaCl aqueous solution. A proper solution heat treatment (at 415 ℃ for 1 h) can further increase the corrosion resistance. In order to improve corrosion resistance, increasing the amount and improving the distribution uniformity of the Al-rich phase are more effective than increasing the Al solubility in the matrix.  相似文献   
123.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD),研究了固溶处理对流变压铸2024变形铝合金组织及硬度的影响。结果表明,流变压铸成形的2024变形铝合金在495℃固溶处理12 h后,共晶相θ(CuAl2)相和S(CuAl2Mg)相逐渐固溶进入α-Al基体内部,使得合金基体中的过饱和Cu、Mg合金元素的含量增多,对合金起到良好的固溶强化作用。而且,随着固溶时间的增加,流变压铸成形2024的组织中的初生颗粒与二次凝固区颗粒出现合并长大现象,其它们的长大速率都随固溶时间的延长而降低。  相似文献   
124.
熔体处理在制备Mg-9Zn-2Al镁合金半固态浆料中的作用   总被引:1,自引:0,他引:1  
采用自孕育法制备新型Mg-9Zn-2Al高锌镁合金半固态浆料,研究孕育剂加入量为5%(质量分数)、导流器角度为45°时熔体处理温度对Mg-9Zn-2Al镁合金组织的影响。对孕育剂加入熔体后的熔化状况进行分析,并从原子团簇角度探讨熔体处理温度对一次孕育的作用机理。结果表明:熔体处理温度过高或过低时,组织平均晶粒尺寸较大;在695~710℃范围内,晶粒平均尺寸较小,约为47.5~48.8μm。根据所推导出的孕育剂在导流器入口处的温度表达式,可以确定自孕育法铸造的最佳熔体处理温度,提出用固相率fS描述自孕育剂的熔化状况。  相似文献   
125.
研究了搅拌摩擦加工(FSP)次数对AZ91D镁合金组织的影响.结果表明:加工次数对搅拌摩擦区晶粒大小影响不大;但加工次数多可增加搅拌摩擦区组织的面积,并使组织均匀化;使热机械影响区组织向搅拌摩擦区组织发生转变;增大轴肩下压区细晶组织面积,进一步细化轴肩下压区的晶粒.  相似文献   
126.
铸造工艺对AZ91D镁合金半固态组织制备的影响   总被引:3,自引:2,他引:3  
李元东  郝远  陈体军  阎峰云 《铸造技术》2004,25(12):937-940
研究了金属型、湿砂型和干砂型对AZ91D镁合金半固态组织制备的影响.结果表明:增加冷却速率有利于初始凝固组织中存在的非平衡组织的分散细化.原始组织中的非平衡共晶组织在加热过程中大部分扩散溶解而溶入基体中,剩余部分在加热过程中首先熔化.冷却速率越大或预变形处理以后的试样在熔化过程中更容易发生二次枝晶臂之间的合并.提出半固态熔化过程可分为成分均匀化、共晶熔化和部分初生相的熔化和球化完成三个阶段,不同熔化阶段时,控制性因素不同.熔化后的半固态组织中固态颗粒的尺寸和形貌主要与初始组织的形貌、加热过程中非平衡组织的溶解速度及加热速度有关.  相似文献   
127.
李海宏  陈体军  郝远  侯伟骜  吕维玲 《铸造》2006,55(8):835-838
采用静载荷实验和扫描电镜,研究了pH值对触变成形和金属型AZ91D镁合金应力腐蚀行为的影响。通过对试验现象、试样断裂时间及断口形貌的对比分析,结果表明:触变成形AZ91D镁合金的抗应力腐蚀敏感性明显高于金属型AZ91D镁合金的。主要是由于触变成形工艺的优良性,使得镁合金的组织在二次加热等温处理的过程中具有了球状的组织结构,而并非像金属型那样的树枝晶状的组织。同时这种成形工艺也降低了铸件的缩松、气孔和氧化夹杂等缺陷。  相似文献   
128.
采用UMT-2MT摩擦试验机考察了触变成形和传统金属型铸造AZ91D镁合金滑动磨损行为。其摩擦条件是干摩擦往复式、球面一平面接触、与GCr15钢作对偶;研究了载荷和频率对镁合金摩擦磨损性能的影响。分析了其摩擦系数变化和磨痕形貌,并探讨了其磨损机理。研究结果表明,不论何种工艺方法的平均摩擦系数都在0.22~0.40之间,随着频率的增加二者的平均摩擦系数都减小,触变成形的耐磨性比金属型铸造的好;二者的磨损机制相似,在较低载荷下,镁合金的磨损机制为氧化磨损,随着载荷的增大,磨损机制为磨粒磨损、剥层磨损。  相似文献   
129.
用失重法、金相显微镜和扫描电镜(SEM)研究了金属型铸造镁合金AZ91D和触变成型镁合金AZ91D在3.5%NaCl水溶液中的腐蚀行为与组织之间的关系。结果显示:触变成型镁合金的耐蚀性高于金属型铸造镁合金是因为微观组织的不同所致。在腐蚀初期,触变成型镁合金内层试样腐蚀速率高于表层试样,这是由于表层组织中的卢相含量高于内层组织;随腐蚀进行,腐蚀速率基本一致腐蚀主要发生在阳极(共晶α相和α相)区域,卢相作为电偶腐蚀的阴极。电偶对的腐蚀电位、相对位置和面积比是影响触变成型镁合金腐蚀速率的主要因素。  相似文献   
130.
由于Pb与Cu互不固溶,而且铅的密度较大,铅青铜铸件容易产生铅的偏析。尤其在离心力场的作用下,偏析愈易发生。针对实际生产,介绍了离心铸造铅青铜(ZCuPb10Sn10)轴套时防止偏析的措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号