首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4654篇
  免费   351篇
  国内免费   24篇
医药卫生   5029篇
  2024年   1篇
  2023年   57篇
  2022年   42篇
  2021年   179篇
  2020年   139篇
  2019年   175篇
  2018年   198篇
  2017年   163篇
  2016年   174篇
  2015年   198篇
  2014年   214篇
  2013年   288篇
  2012年   432篇
  2011年   430篇
  2010年   263篇
  2009年   224篇
  2008年   345篇
  2007年   285篇
  2006年   285篇
  2005年   232篇
  2004年   182篇
  2003年   178篇
  2002年   129篇
  2001年   30篇
  2000年   21篇
  1999年   29篇
  1998年   38篇
  1997年   24篇
  1996年   17篇
  1995年   10篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1986年   1篇
  1984年   1篇
  1982年   4篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1929年   2篇
  1924年   2篇
排序方式: 共有5029条查询结果,搜索用时 15 毫秒
21.
We investigated the role of the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC) in a visuospatial delayed-response task in humans. Repetitive transcranial magnetic stimulation (20 Hz, 0.5 s) was used to interfere temporarily with cortical activity in the DLPFC and PPC during the delay period. Omnidirectional memory-guided saccades with a 3-s delay were used as a quantifiable motor response to a visuospatial cue. The question addressed was whether repetitive transcranial magnetic stimulation (rTMS) over the DLPFC or PPC during the sensory of memory phase affects accuracy of memory-guided saccades. Stimulation over the primary motor cortex served as control. Stimulation over the DLPFC significantly impaired accuracy of memory-guided saccades in amplitude and direction. Stimulation over the PPC impaired accuracy of memory-guided saccades only when applied within the sensory phase (50 ms after cue offset), but not during the memory phase (500 ms after cue offset). These results provide further evidence for a parieto-frontal network controlling performance of visuospatial delayed-response tasks in humans. It can be concluded that within this network the DLPFC is mainly concerned with the mnemonic respresentation and the PPC with the sensory representation of spatially defined perceptual information. Received: 22 April 1996/Accepted: 16 June 1997  相似文献   
22.
Differential cortical activation by cognitive processing was studied using dimensional complexity, a measure derived from nonlinear dynamics that indicates the degrees of freedom (complexity) of a dynamic system. We examined the EEG of 32 healthy subjects at rest, during a visually presented calculation task, and during a moving shape perception task. As a nonlinear measure of connectivity, the mutual dimension of selected electrode pairs was used. The first Lyapunov coefficient was also calculated. Data were tested for non-linearity using a surrogate data method and compared to spectral EEG measures (power, coherence). Surrogate data testing confirmed the presence of nonlinear structure in the data. Cognitive activation led to a highly significant rise in dimensional complexity. While both tasks activated central, parietal and temporal areas, mental arithmetic showed frontal activation and an activity maximum at T3, while the moving shape task led to occipital activation and a right parietal activity maximum. Analysis of mutual dimension showed activation of a bilateral temporal-right frontal network in calculation. The Lyapunov coefficent showed clear topographic variation, but was not significantly changed by mental tasks (p<.09). While dimensional complexity was almost unrelated to power values, nonlinear (mutual dimension) and linear (coherence) measures of connectivity shared up to 37% of variance. Data are interpreted in terms of increased cortical complexity as a result of recruitment of asynchronously active, distributed neuronal assemblies in cognition. The topography of nonlinear dynamics are related to neuropsychological and neuroimaging findings on mental calculation and moving shape perception.  相似文献   
23.
The Marfan syndrome (MFS) is a pleiotropic, autosomal dominant disorder of connective tissue with highly variable clinical manifestations including aortic dilatation and dissection, ectopia lentis, and a series of skeletal anomalies. Mutations in the gene for fibrillin-1 (FBN1) cause MFS, and at least 337 mainly unique mutations have been published to date. FBN1 mutations have been found not only in MFS but also in a range of connective tissue disorders collectively termed fibrillinopathies ranging from mild phenotypes, such as isolated ectopia lentis, to severe disorders including neonatal MFS, which generally leads to death within the first two years of life. The present article intends to provide an overview of mutations found in MFS and related disorders and to discuss potential genotype-phenotype correlations in MFS.  相似文献   
24.
Increased levels of the cyclin-dependent kinase inhibitor p21 associated with decreased myoblast proliferation may be involved in the dystrophic process in Duchenne muscular dystrophy (DMD). Therefore we are interested to improve the proliferation of primary myoblasts of DMD patients by a reduction in p21 using either antisense oligonucleotides (ASO) or short interfering RNAs (siRNA). After transient transfection of myoblasts in cell culture proliferation was analyzed using a 5-bromo-2-deoxyuridine assay comparing specific transfected cells with untransfected cells and cells transfected with scrambled ASO and luciferase siRNA, respectively. Four of five Dystrophin-deficient (Dys) cell culture samples revealed an increase in proliferation between 7% and 18% compared to untransfected cells and between 8% and 36% compared to cells transfected with scrambled ASO. Transfection with siRNA was performed for selected samples to determine whether siRNA is more effective in gene silencing than ASO. The increase in proliferation using luciferase siRNA as reference was comparable to or less than ASO data using scrambled ASO as reference. Using untransfected cells as reference, the increase in proliferation was higher for siRNA than ASO (20–47% vs. 7–18%), but the data must be carefully interpreted with respect to nonspecific effects on gene expression by siRNA. Our findings of transient p21 gene silencing represent a basis for viral vector-mediated drug-inducible p21 shRNA expression in Dys myoblasts which might enhance, prolong and regulate the proliferation effect.S. Endesfelder and A. Kliche contributed equally to this work  相似文献   
25.
The recruitment of monocytes appears to be a crucial factor for inflammatory lung disease. Alveolar epithelial cells contribute to monocyte influx into the lung, but their impact on monocyte inflammatory capacity is not entirely clear. We thus analyzed the modulation of monocyte oxidative burst by A549 and isolated human alveolar epithelial cells. Epithelial infection with Moraxella catarrhalis induced monocyte adhesion, transepithelial migration, and superoxide generation, whereas stimulation with lipopolysaccharide, tumor necrosis factor-alpha, interleukin-1beta, or interferon-gamma induced adhesion or transmigration, but failed to initiate monocyte burst. The effect of microbial challenge was mimicked by phorbol myristate acetate and inhibited by the protein kinase C inhibitor bisindoylmaleimide. Furthermore, evidence for a role of platelet-activating factor-signaling in monocytes is presented. Monocyte burst was neither induced by supernatant nor affected by fixation of A549 cells, excluding the contribution of epithelium-derived soluble factors but emphasizing the mandatory role of intercellular contact. The employment of blocking antibodies, however, denied a role for the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, or CD11b/CD18 and CD49d/CD29. In essence, infection of alveolar epithelial cells with M. catarrhalis might amplify the inflammatory capacity of invading monocytes eliciting their superoxide production. The epithelial response to this microbial challenge thus clearly differed from that to proinflammatory cytokines.  相似文献   
26.
Investigation of cell abilities to growth, proliferation and (de)-differentiation in a three-dimensional distribution is an important issue in biotechnological research. Here, we report the development of a new bioreactor for three-dimensional cell culture, which allows for co-cultivation of various cell types with different culture conditions in spatial separation. Preliminary results of neonatal rat cardiomyocyte cultivation are shown. Isolated neonatal rat cardiomyocytes were cultured in spatial separated bioreactor compartments in recirculating medium on a biodegradable fibrin matrix for 2 weeks. Glucose, lactate, and lactate dehydrogenase (LDH), pO2, pCO2, and pH levels were monitored in the recirculated medium, daily. Morphological characterization of matrix and cells was assessed by hematoxylin and eosin staining, and MF-20 co-immunostaining with 4',6-diamidino-2-phenylindole (DAPI). Cell viability was determined by LIVE/DEAD staining before cultivation and on day 3, 7, and 14. The optimized seeding density in the matrix was 2.0 x 10(7) cells retaining cellular proportions over the cell culture period. The bioreactor allows the maintenance of physiologic culture conditions with aerobic cell metabolism (low release of lactate, LDH), a high oxygen tension (pO2-183.7 +/- 18.4 mmHg) and physiological pH values (7.4 +/- 0.02) and a constant level of pCO2 (43.1 +/- 2.9) throughout the experimental course. The cell viability was sufficient after 2 weeks with 82 +/- 6.7% living cells. No significant differences were found between spatial separated bioreactor compartments. Our novel multifunctional bioreactor allows for a three-dimensional culture of cells with spatial separation of the co-cultured cell groups. In preliminary experiments, it provided favorable conditions for the three-dimensional cultivation of cardiomyocytes.  相似文献   
27.
Preclinical mouse infection models are widely used for Helicobacter vaccine development, but how well such models mimic important aspects of human infections is unknown. A comparison of Helicobacter pylori immunoproteomes of infected mice with previously reported patient data reveals a high agreement in the antigens recognized, suggesting that H. pylori in vivo protein composition and recognition by the host immune system are comparable in mice and humans. Murine Helicobacter models may thus be valid to screen antigens for human vaccination.  相似文献   
28.
29.
30.
We recently established that two midgestation-derived stromal clones--UG26-1B6, urogenital ridge-derived, and EL08-1D2, embryonic liver-derived--support the maintenance of murine adult bone marrow and human cord blood hematopoietic repopulating stem cells (HSCs). In this study, we investigate whether direct HSC-stroma contact is required for this stem cell maintenance. Adult bone marrow ckit+ Ly-6C- side population (K6-SP) cells and stromal cells were cocultured under contact or noncontact conditions. These experiments showed that HSCs were maintained for at least 4 weeks in culture and that direct contact between HSCs and stromal cells was not required. To find out which factors might be involved in HSC maintenance, we compared the gene expression profile of EL08-1D2 and UG26-1B6 with four HSC-nonsupportive clones. We found that EL08-1D2 and UG26-1B6 both expressed 21 genes at a higher level, including the putative secreted factors fibroblast growth factor-7, insulin-like growth factor-binding proteins 3 and 4, pleiotrophin, pentaxin-related, and thrombospondin 2, whereas 11 genes, including GPX-3 and HSP27, were expressed at a lower level. In summary, we show for the first time long-term maintenance of adult bone marrow HSCs in stroma noncontact cultures and identify some secreted molecules that may be involved in this support.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号