首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55276篇
  免费   5226篇
  国内免费   2657篇
工业技术   63159篇
  2024年   168篇
  2023年   861篇
  2022年   1533篇
  2021年   2414篇
  2020年   1783篇
  2019年   1509篇
  2018年   1682篇
  2017年   1781篇
  2016年   1598篇
  2015年   2265篇
  2014年   2705篇
  2013年   3468篇
  2012年   3614篇
  2011年   3825篇
  2010年   3388篇
  2009年   3279篇
  2008年   3175篇
  2007年   2979篇
  2006年   3007篇
  2005年   2493篇
  2004年   1868篇
  2003年   1630篇
  2002年   1684篇
  2001年   1537篇
  2000年   1334篇
  1999年   1345篇
  1998年   1167篇
  1997年   991篇
  1996年   804篇
  1995年   676篇
  1994年   505篇
  1993年   436篇
  1992年   330篇
  1991年   266篇
  1990年   180篇
  1989年   179篇
  1988年   144篇
  1987年   84篇
  1986年   85篇
  1985年   72篇
  1984年   33篇
  1983年   25篇
  1982年   37篇
  1981年   34篇
  1980年   23篇
  1979年   21篇
  1977年   16篇
  1976年   19篇
  1974年   13篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
The application of ultra-high-temperature ceramics (UHTCs) demands effective ways of joining in overcoming the problems associated with the fabrication of complex-shaped components. In this study, we choose to investigate a new method of rapidly joining pre-sintered TaC and HfC ceramics without any filler material using the spark plasma sintering (SPS) technique. A well-bonded TaC–HfC interface was observed with no apparent cracking and porosity at the joint. The joining mechanisms were predominantly driven by solid-state diffusion and localized plastic deformation. The nanomechanical properties of the TaC-HfC joint are better than the HfC while comparable to that of the TaC. High-load indentation (up to 200 N) results suggest that the TaC–HfC interface is stronger than the parent UHTCs with no crack propagating at the interface. Upon comparison with the parent UHTCs, the damaged area and the average crack length at the interface, reduced up to ~94% and ~56%, respectively. This study shows that the SPS technique can also apply to joining other UHTCs without any filler, resulting in the new field of developing complex components for the thermal protection system (TPS).  相似文献   
992.
With the development of advanced electrical and electronic devices and the requirement of environmental protection, lead-free dielectric capacitors with excellent energy storage performance have aroused great attention. However, it is a great challenge to achieve both large energy storage density and high efficiency simultaneously in dielectric capacitors. This work investigates the energy storage performance of sol-gel-processed (K,Na)NbO3-based lead-free ferroelectric films on silicon substrates with compositions of 0.95(K0.49Na0.49Li0.02)(Nb0.8Ta0.2)O3-0.05CaZrO3-x mol% Mn (KNN-LT-CZ5-x mol% Mn). The appropriate amount of Mn-doping facilitates the coexistence of orthorhombic and tetragonal phases, suppresses the leakage current, and considerably enhances the breakdown strengths of KNN-LT-CZ5 films. Consequently, large recoverable energy storage density up to 64.6 J cm−3 with a high efficiency of 84.6% under an electric field of 3080 kV cm−1 are achieved in KNN-LT-CZ5-5 mol% Mn film. This, to the best of our knowledge, is superior to the majority of both the lead-based and lead-free films on silicon substrates and thus demonstrates great potentials of (K,Na)NbO3-based lead-free films as dielectric energy storage materials.  相似文献   
993.
Spinel-structured NiMn2O4 ceramics, with different valence Ni sources, were originally prepared using Ni2O3 and NiO as raw materials, and the effects of different valence Ni sources on their electrical properties were first investigated. XRD patterns show that both Ni2O3-based and NiO-based NiMn2O4 ceramics are single cubic spinel structures. SEM/EDS images indicate that the NiMn2O4 ceramics exhibited high density at the experiment-determined sintering temperatures. XPS results and Raman drifts prove that the Ni valence-induced changes in Mn ions at B sites played a significant role in the electrical properties and thermal stability of NiMn2O4 ceramics. Compared with NiO-based NiMn2O4, the resistivity at 25°C (ρ25°C) of Ni2O3-based NiMn2O4 increased dramatically from 3109 to 106958 Ω cm, the thermal constant (B25/50) increased from 3264 to 4473 K, and the resistance shifts after annealing for 1000 h at 150°C decreased from 0.80% to 0.74%. The investigation of the relationship between the material properties and valence of Ni sources has provided a new and effective way for designing the spinel-structured negative temperature coefficient (NTC) materials by modulating the valence of ions at A sites in the raw materials.  相似文献   
994.
Monodisperse ZrO2 ceramic beads with size larger than 1 mm have been prepared by an improved micro-droplet spray forming process, through which a compressor and a dispenser were employed to produce droplets continuously. Furthermore, the slurry recipe and drying temperature have been optimized to enhance the sphericity and smoothness of the beads. The sintered ZrO2 ceramic beads present promising mechanical performance, including a relative density of 84.6%, a crush strength of 256.2 ± 36.6 N as well as a Vickers hardness of 1344.4 ± 58.3 HV. Such procedure reveals great potential in mass production of ceramic beads.  相似文献   
995.
Ti4+-modified MgZrNb2O8 (MgZr1-xTixNb2O8, x = 0, 0.1, 0.2, 0.3, 0.4) ceramics were synthesized using the traditional solid-state reaction method. Pure MgZr1–xTixNb2O8 was detected without any secondary phase via the X-ray diffraction patterns. According to the sintering behavior and the surface morphology results, the introduction of Ti4+ reduced the sintering temperature and promoted the grain growth. The correlations between the dielectric properties and the crystal structure were analyzed through the Rietveld refinement and Raman spectroscopy. The slight shifts of the Raman peaks, corresponding to different vibration modes, were induced by the substitution of Ti4+ for Zr4+ and related to the improved quality factor. In general, the sample of MgZr0.9Ti0.1Nb2O8 sintered at 1320°C for 4 h exhibited promising microwave dielectric properties with an ultra-high Q × f value of 130 123 GHz (at 7.308 GHz, 20°C), which is potential for 5G communication applications.  相似文献   
996.
Cheng  Jiaqi  Gong  Junyi  Yue  Shuai  Jiang  Yao  Hou  Xiangjun  Ma  Jianjun  Yao  Yali  Jiang  Cairong 《Journal of Applied Electrochemistry》2021,51(8):1175-1188
Journal of Applied Electrochemistry - La-doped titanate materials have been widely investigated as alternative Ni-free anodes for solid oxide fuel cells (SOFCs). In this study, La0.4Sr0.6TiO3 (LST)...  相似文献   
997.
In this study, spray-coating was used to prepare dihydroxypolydimethylsiloxane (PDMS) composite membranes with high flux and separation factor for biobutanol recovery from aqueous solution. A thin, smooth, and defect-free PDMS layer was prepared by spray-coating on polyvinylidene difluoride ultrafiltration membrane with little PDMS penetration. The effects of process parameters for membrane fabrication and pervaporation on membrane performance were investigated. A membrane with 2 μm active layer was obtained with a high flux of 1306.9 g/m2 h. The optimal membrane with the highest pervaporation separation index (PSI) (19.15 kg/m2 h) showed a total flux of 530.6 g/m2 h and a separation factor of 36.1 at 37°C, and a PSI of 65.61 kg/m2 h and a flux of 1927.0 g/m2 h at 70°C. Membrane performance was affected by feed composition and temperature. Acetone-butanol-ethanol solution and fermentation broth gave lower butanol fluxes and separation factors compared to butanol model solution.  相似文献   
998.
Synthesized by the reaction between α-cellulose and m-tolyl isocyanate (MTI), cellulose carbamate (CC) was blended with polyvinyl chloride (PVC) to fabricate substrates for thin-film composite (TFC) forward osmosis (FO) membranes. The introduction of CC into substrates improved both membrane structure and performance. The substrates exhibited higher porosity and hydrophilicity, and better connective pore structure; while rejection layer exhibited better morphology but limited cross-linked degree decrease after the introduction of CC. According to the results, the CC blend ratio of 10% was the optimal ratio. With this blend ratio, the TFC-10 membrane presented favorable water permeability (1.86 LMH/bar) and structure parameter (337 μm), which resulted in excellent FO performance (water flux with a value of 40.40 LMH and specific salt flux with a value of 0.099 g/L under rejection layer faces draw solution [DS] mode when 1 M NaCl and deionized water were utilized as DS and feed solution). In addition, the TFC-10 membrane showed good water flux and low-sulfate ion leakage in the potential application of brackish water desalination.  相似文献   
999.
A facile method to synthesize nanoscale graphene oxide (GO) with controllable interlayer spacing was carried out using two-step oxidation process and much less acid to improve the efficiency of the oxidation. The X-ray diffraction results demonstrated that GO had been successfully prepared from graphite because of disappearance of characteristic peaks of pristine graphite at about 2θ = 26.5° along with appearance of a sharp major peak of GO at about 2θ = 9.4°. The increased basal spacing d001 of as-prepared GO could reach as high as 9.39 Å, suggesting higher degree of oxidation than that prepared by the classical Hummers' synthesis, and characterization results from Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy further confirmed this conclusion. The influence of GO on anti-corrosion performance of nanocomposite coatings composited with the 2,5-dimethoxyaniline (DMA) conductive polymer was examined via potentiodynamic polarization curve tests in 3.5 wt% NaCl aqueous solution. The results demonstrated that the incorporation of GO significantly decreased the corrosion current density (icorr = 2.62 μA/cm2) in the case of GO-PDMA coating, reflecting excellent physical isolation of GO and its synergistic effect with PDMA against the infiltration of water and corrosive electrolyte.  相似文献   
1000.
The purpose of this paper is to research improvement in the flexibility of epoxy acrylate 3D printing materials so as to satisfy the requirements of clothing attachments or accessories. Tensile tests, differential scanning calorimeter, XRD, rheological and Fourier transform infrared analysis were used to measure and compare the performance and characteristics of polyethylene glycol modified bisphenol-A epoxy acrylate 3D printed samples with different molecular weights and contents. Based on a comprehensive analysis of the experimental results, the E/PEG1000(1/0.2)-AA sample was revealed to have an optimal composition ratio. After secondary curing, the tensile strength of the sample rose to 8 MPa, with the elongation being converged to 30%. This paper provides a reference for the modification and improvement of flexible UV-cured 3D printed products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号