首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   28篇
  国内免费   6篇
工业技术   827篇
  2024年   7篇
  2023年   6篇
  2022年   29篇
  2021年   52篇
  2020年   38篇
  2019年   38篇
  2018年   39篇
  2017年   24篇
  2016年   25篇
  2015年   16篇
  2014年   28篇
  2013年   76篇
  2012年   41篇
  2011年   39篇
  2010年   49篇
  2009年   52篇
  2008年   58篇
  2007年   54篇
  2006年   19篇
  2005年   15篇
  2004年   13篇
  2003年   10篇
  2002年   13篇
  2001年   14篇
  2000年   5篇
  1999年   2篇
  1998年   24篇
  1997年   9篇
  1996年   14篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
91.
CNTs were decorated onto Sr doped ZnO nanoparticles to construct an efficient photocatalyst via a facile sol-gel method. The as-fabricated Sr doped ZnO/CNTs with recyclability exhibits Sr and CNTs content dependent hydrogen evolution activit under visible light illumination. The Sr doped ZnO/CNTs photocatalyst shows the highest hydrogen evolution rate of 2732.2 μmolh?1g?1, which is 33.7 and 2.83 times higher than pure ZnO and Sr doped ZnO photocatalysts, respectively. The improved hydrogen evolution activity of Sr doped ZnO/CNTs is primarily assigned to high surface area, Sr doping and construction of heterojunction, which can extend the light absorption, decrease the optical band gap and improve the charge separation. Moreover, the underlying photocatalytic mechanism is proposed on the basis of Mott-Schottky study and explains the interfacial charge transfer process from ZnO to CNTs and Sr. This work open new strategies to synthesize CNTs based nanocomposite for hydrogen evolution.  相似文献   
92.
In literature, the concept of material gradation is shown to inhibit surface crack initiation in glass/ceramic composites subjected to Hertzian indentation. However, surface cracks could yet initiate due to relatively higher loadings or in the presence of surface flaws/defects. Hence, characterization of graded composites concerning the resistance against Hertzian crack initiation and propagation manifests itself as a prominent matter. In this study, axisymmetric Hertzian cracks evolving in graded glass/ceramic composites propelled by a rigid cylindrical punch are investigated employing a novel recursive method, called the stacked-node propagation procedure. Crack trajectories and their propagation susceptibilities are predicted via the minimum strain energy density (MSED) criterion regarding the crack growth resistance (R-curve) of ceramics. The stress trajectory approach is also considered for a homogeneous glass to reveal the reliance and effectiveness of the MSED criterion in the present crack problems. The Mori–Tanaka relations are adopted to model the elastic modulus and Poisson's ratio variations through the composites, which are implemented on the simulations via the homogeneous finite element approach. Hertzian crack problem of a practically producible graded composite comprised of oxynitride glass and a fine-grained silicon nitride ceramics (Si3N4) is treated as a case study. The degree of material gradation is assessed for the mitigation of surface crack initiation and propagation risks.  相似文献   
93.
For modern high-tech flexible energy storage devices, it becomes important to synthesize micro-/nanostructures as per the required shape and morphology with superior physical and electro-active characteristics. This work shares the fabrication and characterization of ZnSn(OH)6 (Zinc hydroxystannate [ZHS]) prepared by facile microwave-assisted technique and furthermore converted into flexible sheets by employing lignocelluloses (LC) known as natural fibers, collected from Carica papaya leaf petiole as a substrate to provide the flexible matrix. X-ray diffraction measurements confirm the successful crystalline structure of ZHS. Scanning electron microscopy and transmission electron microscopy showed the solid spherical structure of ZHS microspheres. Fourier transform infrared spectrometry and Raman spectroscopy confirmed the composite formation of ZHS and LC-based composite sheets (ZHS/LC sheets). Electrochemical measurements that is, cyclic voltammetry (CV), Galvanostatic charge/discharge, and electrochemical impedance (EIS) spectroscopy revealed the electroactive behavior of ZHS/LC paper sheets as working electrode for energy storage applications. CV measurements revealed the specific capacitance of 100 F/g and EIS measurements confirmed the decrease in the resistance of LC fiber after the growth of ZHS microspheres. Presented flexible ZHS based paper sheets will be highly feasible for the modern bendable/flexible/disposable energy storage applications.  相似文献   
94.
95.
Turkish lignite can be used as a new adsorption material for removing some toxic metals from aqueous solution. The adsorption of lignite (brown young coals) to remove copper (Cu2+), lead (Pb2+), and nickel (Ni2+) from aqueous solutions was studied as a function of pH, contact time, metal concentration and temperature. Adsorption equilibrium was achieved between 40 and 70 min for all studied cations except Pb2+, which is between 10 and 30 min. The adsorption capacities are 17.8 mg/g for Cu2+, 56.7 mg/g for Pb2+, 13.0 mg/g for Ni2+ for BC1 (Ilg?n lignite) and 18.9 mg/g for Cu2+, 68.5 mg/g for Pb2+, 12.0 mg/g for Ni2+ for BC2 (Beysehir lignite) and 7.2 mg/g for Cu2+, 62.3 mg/g for Pb2+, 5.4 mg/g for Ni2+ for AC (activated carbon). More than 67% of studied cations were removed by BC1 and 60% BC2, respectively from aqueous solution in single step. Whereas about 30% of studied cations except Pb2+, which is 90%, were removed by activated carbon. Effective removal of metal ions was demonstrated at pH values of 3.8–5.5. The adsorption isotherms were measured at 20 °C, using adsorptive solutions at the optimum pH value to determine the adsorption capacity. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of metal ions. The mechanism for cations removal by the lignite includes ion exchange, complexation and sorption. The process is very efficient especially in the case of low concentrations of pollutants in aqueous solution, where common methods are either economically unfavorable or technically complicated.  相似文献   
96.
The variation in oil content, oil yield and fatty acid compositions of 103 sesame landraces was investigated. The landraces varied widely in their oil quantity and quality. The oil content varied between 41.3 and 62.7%, the average being 53.3%. The percentage content of linoleic, oleic, palmitic and stearic acids in the seed oil ranged between 40.7–49.3, 29.3–41.4, 8.0–10.3 and 2.1–4.8%, respectively. Linolenic and arachidic acids were the minor constituents of the sesame oil. Linoleic and oleic acids were the major fatty acids of sesame with average values of 45.7 and 37.2%, respectively. The total means of oleic and linoleic acids as unsaturated fatty acids of sesame were about 83% which increases the suitability of the sesame oil for human consumption. The superiority of the collection was observed in oil content. The oil content of a few accessions was above 60%, proving claims that some varieties of sesame can reach up to 63% in oil content. The accessions with the highest oil content were relatively richer in the linoleic acid content while there were some landraces in which linoleic and oleic acid contents were in a proportion of almost 1:1. The results obtained in this study provide useful background information for developing new cultivars with a high oil content and different fatty acid compositions. Several accessions could be used as parental lines in breeding programmes aiming to increase sesame oil quantity and quality.  相似文献   
97.

Object

Imaging of myocardial infarct composition is essential to assess efficacy of emerging therapeutics. T 2 * mapping has the potential to image myocardial hemorrhage and fibrosis by virtue of its short T 2 * . We aimed to quantify T 2 * in acute and chronic myocardial ischemia/reperfusion (I/R) injury in mice.

Materials and methods

I/R-injury was induced in C57BL/6 mice (n?=?9). Sham-operated mice (n?=?8) served as controls. MRI was performed at baseline, and 1, 7 and 28?days after surgery. MRI at 9.4?T consisted of Cine, T 2 * mapping and late-gadolinium-enhancement (LGE). Mice (n?=?6) were histologically assessed for hemorrhage and collagen in the fibrotic scar.

Results

Baseline T 2 * values were 17.1?±?2.0?ms. At day 1, LGE displayed a homogeneous infarct enhancement. T 2 * in infarct (12.0?±?1.1?ms) and remote myocardium (13.9?±?0.8?ms) was lower than at baseline. On days 7 and 28, LGE was heterogeneous. T 2 * in the infarct decreased to 7.9?±?0.7 and 6.4?±?0.7?ms, whereas T 2 * values in the remote myocardium were 14.2?±?1.1 and 15.6?±?1.0?ms. Histology revealed deposition of iron and collagen in parallel with decreased T 2 * .

Conclusion

T 2 * values are dynamic during infarct development and decrease significantly during scar maturation. In the acute phase, T 2 * values in infarcted myocardium differ significantly from those in the chronic phase. T 2 * mapping was able to confirm the presence of a chronic infarction in cases where LGE was inconclusive. Hence, T 2 * may be used to discriminate between acute and chronic infarctions.  相似文献   
98.
A new acylated and triterpenoidal saponin, named GS1, was isolated from the roots of Gypsophila arrostii Guss. On the basis of acid hydrolysis, comprehensive spectroscopic analyses and comparison with spectral data of known compounds, its structure was established as 3-O-β-D-xylopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-D-glucopyranosyl-{21-O-[(E)-3,4,5trimethoxycinnamoyl]}21-hydroxygypsogenin 28-O-β-D-glucopyranosyl-(1→2)- [β-D-arabinopyranosyl-(1→3)]-β-D-xylopyranosyl-(1→3]-α-L-rhamnopyranosyl ester. This article deals with the isolation and structural elucidation of new acylated and oleanane-type saponin.  相似文献   
99.
Giesa T  Arslan M  Pugno NM  Buehler MJ 《Nano letters》2011,11(11):5038-5046
Silk is an exceptionally strong, extensible, and tough material made from simple protein building blocks. The molecular structure of dragline spider silk repeat units consists of semiamorphous and nanocrystalline β-sheet protein domains. Here we show by a series of computational experiments how the nanoscale properties of silk repeat units are scaled up to create macroscopic silk fibers with outstanding mechanical properties despite the presence of cavities, tears, and cracks. We demonstrate that the geometric confinement of silk fibrils to diameters of 50 ± 30 nm is critical to facilitate a powerful mechanism by which hundreds of thousands of protein domains synergistically resist deformation and failure to provide enhanced strength, extensibility, and toughness at the macroscale, closely matching experimentally measured mechanical properties. Through this mechanism silk fibers exploit the full potential of the nanoscale building blocks, regardless of the details of microscopic loading conditions and despite the presence of large defects. Experimental results confirm that silk fibers are composed of silk fibril bundles with diameters in the range of 20-150 nm, in agreement with our predicted length scale. Our study reveals a general mechanism to map nanoscale properties to the macroscale and provides a potent design strategy toward novel fiber and bulk nanomaterials through hierarchical structures.  相似文献   
100.
The amount of retained austenite in the quenched cold work tool steel sample is 17.7%, in the condition of sub-zero heat treated and double tempered samples following by quenching is 1.9% determined by XRD analysis. The types of carbides (MC, M7C3, M23C6) present in the structure was determined by XRD and SEM-EDS analysis. The hardness of test samples were 865 HV(0.1) for quenched sample and 785 HV(0.1) forth sample subjected to sub-zero treatment and double tempered after the quenching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号