首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  国内免费   1篇
工业技术   52篇
  2024年   1篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1978年   1篇
排序方式: 共有52条查询结果,搜索用时 988 毫秒
31.
Batch distillation processes have gained renewed interest because of the recent development in small-scale industries producing high-value-added, low-volume specialty chemicals. The flexibility and unsteady state nature of batch distillation constitute a challenge for the designer. A particularly difficult problem is the optimal control problem involving open loop solution for the reflux ratio profile. This is because of the complexity of the formulation and the large computational effort associated to its solution. The mathematical and numerical complexities of the optimal control problem get worse when uncertainty is present in the formulation. In this work, by applying the optimality conditions from the real option theory based on the Ito's Lemma [Investment under uncertainity (1994); Memoirs Am. Math. Soc. 4 (1951) 1; Appl. Math. Opt. 4 (1974) 374], the mathematical tools needed to solve optimal control problems in batch distillation columns when uncertainties in the state variables are present have been developed. Furthermore, the coupled maximum principle and NLP approach developed by Diwekar [Am. Inst. Chem. Eng. J. 38 (1992) 1551] has been extended for solving the optimal control problem in the uncertain case. This new algorithm has been implemented in the MultiBatchDS batch distillation process simulator. Finally, a numerical case-study is presented to show the scope and application of the proposed approach.  相似文献   
32.
Kim  Ki-Joo  Diwekar  Urmila M. 《IIE Transactions》2002,34(9):761-777
This paper presents hierarchical improvements to combinatorial stochastic annealing algorithms using a new and efficient sampling technique. The Hammersley Sequence Sampling (HSS) technique is used for updating discrete combinations, reducing the Markov chain length, determining the number of samples automatically, and embedding better confidence intervals of the samples. The improved algorithm, Hammersley stochastic annealing, can significantly improve computational efficiency over traditional stochastic programming methods. This new method can be a useful tool for large-scale combinatorial stochastic programming problems. A real-world case study involving solvent selection under uncertainty illustrates the usefulness of this new algorithm.  相似文献   
33.
The Baron fiber classifier is an instrument used to separate fibers by length. The flow combination section (FCS) of this instrument is an upstream annular region, where an aerosol of uncharged fibers is introduced along with two sheath flows; length separation occurs by dielectrophoresis downstream in the flow classification section. In its current implementation at NIOSH, the instrument is capable of processing only very small quantities of fibers. In order to prepare large quantities of length-separated fibers for toxicological studies, the throughput of the instrument needs to be increased, and hence, higher aerosol flow rates need to be considered. However, higher aerosol flow rates may give rise to flow separation or vortex formation in the FCS, arising from the sudden expansion of the aerosol at the inlet nozzle. The goal of the present investigation is to understand the interaction of the sheath and aerosol flows inside the FCS, using computational fluid dynamics (CFD), and to identify possible limits to increasing aerosol flow rates. Numerical solutions are obtained using an axisymmetric model of the FCS, and solving the Navier–Stokes equations governing these flows; in this study, the aerosol flow is treated purely aerodynamically. Results of computations are presented for four different flow rates. The geometry of the converging outer cylinder, along with the two sheath flows, is effective in preventing vortex formation in the FCS for aerosol-to-sheath flow inlet velocity ratios below ~50. For higher aerosol flow rates, recirculation is observed in both inner and outer sheaths. Results for velocity, streamlines, and shear stress are presented.

Copyright 2014 Prahit Dubey, Urmila Ghia, and Leonid A. Turkevich  相似文献   

34.
There are inherent uncertainties in the biodiesel production process arising out of feedstock composition, operating and design parameters and can have significant impact on the product quality and process economics. In this paper, the uncertainties are quantified in the form of probabilistic distribution function. Stochastic modeling capability is implemented in the ASPEN process simulator to take into consideration these uncertainties and the output is evaluated to determine impact on process efficiency and quality of biodiesel.  相似文献   
35.
Sustainable ecosystem management aims to promote the structure and operation of the human components of the system while simultaneously ensuring the persistence of the structures and operation of the natural component. Given the complexity of this task owing to the diverse temporal and spatial scales and multidisciplinary interactions, a systems theory approach based on sound mathematical techniques is essential. Two important aspects of this approach are formulation of sustainability-based objectives and development of the management strategies. Fisher information can be used as the basis of a sustainability hypothesis to formulate relevant mathematical objectives for disparate systems, and optimal control theory provides the means to derive time-dependent management strategies. Partial correlation coefficient analysis is an efficient technique to identify the appropriate control variables for policy development. This paper represents a proof of concept for this approach using a model system that includes an ecosystem, humans, a very rudimentary industrial process, and a very simple agricultural system. Formulation and solution of the control problems help in identifying the effective management options which offer guidelines for policies in real systems. The results also emphasize that management using multiple parameters of different nature can be distinctly effective.  相似文献   
36.
High Pressure Processing (HPP) is a well‐established nonthermal technology for ensuring microbial safety and nutritional quality of foods. Ascorbic acid (AA) is highly labile antioxidant, susceptible to degradation when exposed to oxygen, change in pH, temperature, or pressure. Preservation of AA in fruit and vegetable products is a prime concern for food processors. This review summarizes recent data on the effect of HPP on AA content of different fruits and vegetables, and their products. In most of the food products, HPP has supported either preservation or better retention of AA after pressurization (400–600 MPa/5–10 min) at lower or room temperature. High pressure processed foods have demonstrated better stability of AA during refrigeration storage as compared to thermally processed ones. These studies establish the positive implications of HPP and justify its potential use as a promising preservation technique to safeguard AA in food products.  相似文献   
37.
In this paper, we reflect on the effectiveness of environmental assessment (EA for e.g. projects, policies, plans and programmes) in Iranian water management. Urmia Lake Basin (ULB) is used as a case study area and the extent to which EA appears to be delivering environmental protection objectives is established. Data were collected using document analyses, semi-structured interviews with local experts and site visits. It is established that activities are restricted to project level EIA (environmental impact assessment) and that EA is not able to address and mitigate the negative effects of extensive water exploitation through dam- and well building. Strengthening EIA legislation as well as introducing SEA is suggested as a possible way to address shortcomings, in particular with regard to addressing cumulative and wider basin effects.  相似文献   
38.
Multi-agent optimization method is a nature-inspired framework that supports the cooperative search of an optimal solution of an optimization problem by a group of algorithmic agents connected through an environment with certain predefined information sharing protocol. In this work, we propose a novel heterogeneous multi-agent optimization (HTMAO) framework. The proposed framework is validated using a set of benchmark problems a real-world synthesizing radioactive waste blending problem. The optimal radioactive waste blending problem is formulated as a mixed integer nonlinear programming. The total frit used for vitrification process is minimized subject to thermodynamic properties and process model constraints. The model simultaneously determines the optimal decisions that include the combination of the waste tanks that form each waste blend and the amount of frit needed for the vitrification of each waste blend. In developing the HTMAO framework, efficient ant colony optimization algorithms; efficient simulated annealing; efficient genetic algorithm; and sequential quadratic programming solver are considered as algorithmic agents. We illustrate this approach through a real-world case study of the optimal radioactive waste blending of Hanford site in Southern Washington where nuclear waste is stored.  相似文献   
39.
In this paper, a novel fuzzy dynamic routing and wavelength assignment technique is proposed for a wavelength division multiplexing optical network to achieve the best quality of network transmission. This paper proposes a novel quality of service aware fuzzy logic controlled dynamic routing and wavelength assignment algorithm (QoS-FDRWA), where the optimum path is chosen by a fuzzy rule-based inference system. The proposed fuzzy routing technique incorporates optical network transmission attributes such as latency, physical length of the link, data packet loss, number of hops, and wavelength availability status in the path.  相似文献   
40.
The optical code division multiple access (OCDMA), the most advanced multiple access technology in optical communication has become significant and gaining popularity because of its asynchronous access capability, faster speed, efficiency, security and unlimited bandwidth. Many codes are developed in spectral amplitude coding optical code division multiple access (SAC-OCDMA) with zero or minimum cross-correlation properties to reduce the multiple access interference (MAI) and Phase Induced Intensity Noise (PIIN). This paper compares two novel SAC-OCDMA codes in terms of their performances such as bit error rate (BER), number of active users that is accommodated with minimum cross-correlation property, high data rate that is achievable and the minimum power that the OCDMA system supports to achieve a minimum BER value. One of the proposed novel codes referred in this work as modified random diagonal code (MRDC) possesses cross-correlation between zero to one and the second novel code referred in this work as modified new zero cross-correlation code (MNZCC) possesses cross-correlation zero to further minimize the multiple access interference, which are found to be more scalable compared to the other existing SAC-OCDMA codes. In this work, the proposed MRDC and MNZCC codes are implemented in an optical system using the optisystem version-12 software for the SAC-OCDMA scheme. Simulation results depict that the OCDMA system based on the proposed novel MNZCC code exhibits better performance compared to the MRDC code and former existing SAC-OCDMA codes. The proposed MNZCC code accommodates maximum number of simultaneous users with higher data rate transmission, lower BER and longer traveling distance without any signal quality degradation as compared to the former existing SAC-OCDMA codes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号