首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   36篇
  国内免费   6篇
工业技术   722篇
  2024年   4篇
  2023年   14篇
  2022年   26篇
  2021年   44篇
  2020年   40篇
  2019年   24篇
  2018年   33篇
  2017年   41篇
  2016年   28篇
  2015年   22篇
  2014年   51篇
  2013年   62篇
  2012年   35篇
  2011年   36篇
  2010年   47篇
  2009年   25篇
  2008年   34篇
  2007年   26篇
  2006年   20篇
  2005年   12篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1983年   1篇
  1982年   1篇
排序方式: 共有722条查询结果,搜索用时 31 毫秒
141.
ABSTRACT

In current high productivity manufacturing era, it is necessary to develop non-conventional newer tool materials. Here, an attempt has been made for developing MgO doped zirconia-toughened alumina (Mg-ZTA) using powder metallurgy process route. The 3 mol% yttria stabilized zirconia (YSZ) (10 wt%), alumina (Al2O3) (90 wt%) with varying percentage of magnesium oxide (MgO) (0–1 wt%) are mixed to study the phase transformation and uniaxially pressed into square inserts with 0.8 mm nose radius and sintered at 1,600ºC for 1 h in pressure less condition. The maximum hardness of 17.04 GPa, fracture toughness of 5.09 MPa m1/2 and flexural strength of 502 MPa, respectively, has been reached at 0.6 wt% of MgO due to more metastable tetragonal phase. The performance of the insert has been evaluated by machining AISI 4340 steel (radius 75 mm) in lathe. The performance with respect to flank wear, cutting force and surface roughness is quite impressive at different cutting speed even after 20 min of machining. It can be inferred that MgO doped ZTA insert can be used for medium to high-speed machining in current manufacturing scenario and is very promising to replace carbide or coated carbide inserts in coming days.  相似文献   
142.
The paper presents the results of the investigation into the development of a robust catalyst for hydrogen production by thermocatalytic decomposition (TCD) of methane. In this paper, we present the results of the development and utilization of an iron-based catalyst for TCD. The effect of catalyst preparation methodology on the activity and robustness of the catalysts is reported. The catalyst was synthesized from magnetite by reduction in the presence of a reducing gas (methane or hydrogen) using a fixed-bed flow reactor at atmospheric pressures and temperatures ranging from 800 to 900 °C. Reduction under methane was found to synthesize a catalyst with the desired properties and smallest preparation time (2 h). The main advantages of these catalysts identified were: their ability to completely decompose methane (as compared to a maximum of 81% by other catalysts) and to maintain high reactivity for a long period of time (more than 75 h). The catalyst was characterized by SEM, TEM, BET, XRD and particle size analysis. TPR was employed to evaluate the activity of the catalysts, to investigate the various mechanisms of methane decomposition reaction for the catalysts and estimate the kinetic parameters by topochemical model postulated by Avrami–Erofeyev. The estimated kinetic parameters from the analysis of this data are presented. Carbon nanofibers were formed as a co-product of the methane decomposition reactions.  相似文献   
143.
A new model has been proposed for the prediction of solid–liquid interfacial energy for pure elements. It is assumed that the interface between crystalline solid embryo and bulk liquid consists of a monolayer of atoms having a similar atomic packing factor as that of the crystalline solids. It has been observed that the solid–liquid interfacial energy is a strong function of temperature and structure of the solid and planar density of the interface. The solid–liquid interfacial energy has a lower value close to melting temperature and it reaches a maximum at some intermediate temperature. This model tries to correlate the classical nucleation phenomena and structure model of interfaces.  相似文献   
144.
Arrays of ZnO nanowires (NWs) were fabricated within the well-distributed pores of anodic aluminium oxide (AAO) template by a simple chemical method. The photoluminescence (PL) and field emission (FE) properties of the AAO/ZnO NWs hybrid structure were investigated in detail. The hybrid nanostructure exhibits interesting PL characteristics. ZnO NWs exhibit UV emission at 378 nm and two prominent blue-green emissions at about 462 and 508 nm. Intense blue emission from the AAO template itself was observed at around 430 nm. Herein, for the first time we report the FE characteristics of the ZnO/AAO hybrid structure to show the influence of the AAO template on the FE property of the hybrid structure. It is found that the turn-on electric field of the vertically grown and aligned ZnO NWs within the pores of AAO template is lower than the entangled unaligned ZnO NWs extracted from the template. Although the AAO template exhibits no FE current but it helps to achieve better FE property of the ZnO NWs through better alignment. The turn-on electric field of aligned NWs was found to be 3 V μm−1 at a current of 0.1 μA. Results indicate that the AAO embedded ZnO NW hybrid structure may find useful applications in luminescent and field emission display devices.  相似文献   
145.
In this study four different cationic polyelectrolytes of different molecular weight and charge densities were used to flocculate yeast suspensions to determine the effect of flocculant dose, molecular weight and charge density on the resulting floc size, morphology and charge. The zeta potential of the negatively charged yeast flocs was observed to increase with flocculant dose. As the flocculant dose was increased the charge of the floc was observed to reverse; the actual dose at which charge reversal occurs being dependent on the flocculant charge density and molecular weight. Floc size and morphology, measured with a video camera, showed that higher molecular weight flocculants produced larger flocs for the same dose. The results obtained here suggest that that flocculants may be screened by determining the charge, size and morphology of the resulting floc particles which is less time-consuming.  相似文献   
146.
In the present study, the effect of granite reinforcement on the dry sliding wear behaviour of an aluminium–silicon alloy (BS:LM6) was investigated using a pin-on-disc machine. The composite was prepared using liquid metallurgy technique wherein 10 wt.% granite particles were incorporated in the matrix alloy. Sliding wear tests were conducted at applied loads in the range 0.2–1.6 MPa and speeds of 1.89, 3.96 and 5.55 m/s. The matrix alloy was also prepared and tested under identical conditions in order to see the influence of the dispersoid phase on wear behaviour. It was observed that the composite exhibited lower wear rate than that of the matrix alloy. Increasing applied load increased the wear rate. In the case of the composite, the wear rate decreased with speed except at higher pressures at the maximum speed; the trend reversed in the latter case. On the contrary, the matrix alloy exhibited minimum wear rate at the intermediate test speed. Seizure pressure of the composite was significantly higher than that of the matrix alloy, while temperature rise near the contacting surfaces and the coefficient of friction followed an opposite trend. SEM examination of the worn surfaces, subsurface regions and debris enabled to understand the operating wear mechanisms.  相似文献   
147.
Hardfacing, a surface modification technique, is used to rebuild the surface of a workpiece. The economic success of the process depends on selective application of hardfacing material and its chemical composition for a particular application. In this context, three hardfacing electrodes having different chemical compositions have been selected and their abrasive wear responses was compared with that of mild steel. The emphasis has been made to realize the effect of microstructure and chemical composition on the wear response of the hardfacing material with respect to mild steel. It has been observed that the wear rate of hardfacing alloys is lower than that of mild steel. The hardfacing alloy having the highest chromium content exhibits the lowest wear rate.  相似文献   
148.
Al–Sc and Al–Sc–Zr alloys containing 0.05, 0.1 and 0.5 wt.% Sc and 0.15 wt.% Zr were investigated using optical microscopy, electron microscopy and X-ray diffraction. The phase composition of the alloys and the morphology of precipitates that developed during solidification in the sand casting process and subsequent thermal treatment of the samples were studied. XRD analysis shows that the weight percentage of the Al3Sc/Al3(Sc, Zr) precipitates was significantly below 1% in all alloys except for the virgin Al0.5Sc0.15Zr alloy. In this alloy the precipitates were observed as primary dendritic particles. In the binary Al–Sc alloys, ageing at 470 °C for 24 h produced precipitates associated with dislocation networks, whereas the precipitates in the annealed Al–Sc–Zr alloys were free of interfacial dislocations except at the lowest content of Sc. Development of large incoherent precipitates during precipitation heat treatment reduced hardness of all the alloys studied. Growth of the Al3Sc/Al3(Sc, Zr) precipitates after heat treatment was less at low Sc content and in the presence of Zr. Increase in hardness was observed after heat treatment at 300 °C in all alloys. There is a small difference in hardness between binary and ternary alloys slow cooled after sand casting.  相似文献   
149.
Cenospheres in the range of 30–50 vol.% were used as space holders for making syntactic aluminum foam having density 1.5–1.9 gm/cc using stir-casting technique. The synthesized syntactic foam (SF) was characterized in terms of microstructures, hardness and compressive deformation behaviour. It was noted that the SF behaves like a high strength aluminium foam under compressive deformation exhibiting flat plateau region in the stress–strain curves. The plateau stress of SF decreases with cenosphere volume fraction vis-à-vis porosity following a power law relationship. But, the densification strain increases linearly with cenosphere volume fraction.  相似文献   
150.
Cu-Zn alloy system with three different compositions has been chosen to study the time, temperature and composition dependence of the Diffusion Induced Grain boundary Migration (DIGM) in the temperature range of 277–427°C. The grain boundary migration follows parabolic rate law as a function of time. The diffusivity, Dbα, was calculated from concentration-distance profile using growth rate, v. The activation energy for diffusion is found to be 101kJ/mol which is nearly half of the activation energy required for volume diffusion indicating that preferential grain boundary diffusion is more favorable than volume diffusion leading to grain boundary migration in Cu-Zn system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号