首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3478篇
  免费   202篇
  国内免费   12篇
工业技术   3692篇
  2024年   3篇
  2023年   46篇
  2022年   23篇
  2021年   105篇
  2020年   55篇
  2019年   81篇
  2018年   92篇
  2017年   82篇
  2016年   108篇
  2015年   88篇
  2014年   132篇
  2013年   202篇
  2012年   250篇
  2011年   301篇
  2010年   216篇
  2009年   210篇
  2008年   224篇
  2007年   173篇
  2006年   167篇
  2005年   122篇
  2004年   128篇
  2003年   101篇
  2002年   123篇
  2001年   100篇
  2000年   68篇
  1999年   65篇
  1998年   127篇
  1997年   70篇
  1996年   47篇
  1995年   28篇
  1994年   30篇
  1993年   23篇
  1992年   23篇
  1991年   13篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1980年   2篇
  1979年   4篇
  1976年   2篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有3692条查询结果,搜索用时 218 毫秒
81.
A photomultiplication (PM)-type organic photodetector (OPD) that exploits the ionic motion in CsPbI3 perovskite quantum dots (QDs) is demonstrated. The device uses a QD monolayer as a PM-inducing interlayer and a donor–acceptor bulk heterojunction (BHJ) layer as a photoactive layer. When the device is illuminated, negative ions in the CsPbI3 QD migrate and accumulate near the interface between the QDs and the electrode; these processes induce hole injection from the electrode and yield the PM phenomenon with an external quantum efficiency (EQE) >2000% at a 3 V applied bias. It is confirmed that the ionic motion of the CsPbI3 QDs can induce a shift in the work function of the QD/electrode interface and that the dynamics of ionic motion determines the response speed of the device. The PM OPD showed a large EQE-bandwidth product >106 Hz with a −3 dB frequency of 125 kHz at 3 V, which is one of the highest response speeds reported for a PM OPD. The PM-inducing strategy that exploits ionic motion of the interlayer is a potential approach to achieving high-efficiency PM OPDs.  相似文献   
82.
Dissolving microneedle (DMN) is an attractive alternative to parenteral and enteral drug administration owing to its painless self-administration and safety due to non-generation of medical waste. For reproducible and efficient DMN administration, various DMN application methods, such as weights, springs, and electromagnetic devices, have been studied. However, these applicators have complex structures that are complicated to use and high production costs. In this study, a latch applicator that consists of only simple plastic parts and operates via thumb force without any external complex device is developed. Protrusion-shaped latches and impact distances are designed to accumulate thumb force energy through elastic deformation and to control impact velocity. The optimized latch applicator with a pressing force of 25 N and an impact velocity of 5.9 m s−1 fully inserts the drug-loaded tip of the two-layered DMN into the skin. In an ovalbumin immunization test, DMN with the latch applicator shows a significantly higher IgG antibody production rate than that of intramuscular injection. The latch applicator, which provides effective DMN insertion and a competitive price compared with conventional syringes, has great potential to improve delivery of drugs, including vaccines.  相似文献   
83.
Conventional elastomeric polymers used as substrates for wearable platforms have large positive Poisson's ratios (≈0.5) that cause a deformation mismatch with human skin that is multidirectionally elongated under bending of joints. This causes practical problems in elastomer-based wearable devices, such as delamination and detachment, leading to poorly reliable functionality. To overcome this issue, auxetic-structured mechanical reinforcement with glass fibers is applied to the elastomeric film, resulting in a negative Poisson's ratio (NPR), which is a skin-like stretchable substrate (SLSS). Several parameters for determining the materials and geometrical dimensions of the auxetic-structured reinforcing fillers are considered to maximize the NPR. Based on numerical simulation and digital image correlation analysis, the deformation tendencies and strain distribution of the SLSS are investigated and compared with those of the pristine elastomeric substrate. Owing to the strain-localization characteristics, an independent strain-pressure sensing system is fabricated using SLSS with a Ag-based elastomeric ink and a carbon nanotube-based force-sensitive resistor. Finally, it is demonstrated that the SLSS-based sensor platform can be applied as a wearable device to monitor the physical burden on the wrist in real time.  相似文献   
84.
Conventional power sources encounter difficulties in achieving structural unitization with complex-shaped electronic devices because of their fixed form factors. Here, it is realized that an on-demand conformal Zn-ion battery (ZIB) on non-developable surfaces uses direct ink writing (DIW)-based nonplanar 3D printing. First, ZIB component (manganese oxide-based cathode, Zn powder-based anode, and UV-curable gel composite electrolyte) inks are designed to regulate their colloidal interactions to fulfill the rheological requirements of nonplanar 3D printing, and establish bi-percolating ion/electron conduction pathways, thereby enabling geometrical synchronization with non-developable surfaces, and ensuring reliable electrochemical performance. The ZIB component inks are conformally printed on arbitrary curvilinear substrates to produce embodied ZIBs that can be seamlessly integrated with complicated 3D objects (including human ears). The conformal ZIB exhibits a high fill factor (i.e., areal coverage of cells on underlying substrates, ≈100%) that ensures high volumetric energy density (50.5 mWh cmcell−3), which exceeds those of previously-reported shape-adaptable power sources.  相似文献   
85.
A porphyrin–peptoid‐hybridized silica‐coated gold nanoparticle is developed, which is inspired by the protein–chlorophyll ensemble found in photosynthetic antenna. In the natural antenna, chlorophylls are integrated into dense assemblies that are supported by frameworks of proteins, which ensure optimal pigment arrangement for effective light harvesting. In the subject platform, porphyrins are conjugated to the peptoid helix scaffold in a structurally well‐defined alignments and subsequently immobilized on the surface of nanoparticles. This prevents intermolecular aggregation among porphyrins and allows high resolution analysis of the effect of porphyrin configuration on the optical properties of the system. Interestingly, under the influence of plasmon from the gold nanoparticle core, the fluorescence of porphyrin is enhanced up to 24‐fold at the wavelength where the plasmon resonance matches the porphyrin excitation wavelength. In addition, differences in porphyrin configuration result in spectral modification of their fluorescence emissions. Particularly, the peptoid bearing two porphyrins at a distance of 6 Å shows the most significant alteration in fluorescence. The platform can facilitate extensive studies on the relationship between porphyrin arrangement design and their photophysical interaction in antenna complexes.  相似文献   
86.
87.
88.
89.
The aim of this study was to evaluate antiproliferative sirolimus- and antioxidative alpha-lipoic acid (ALA)-eluting stents using biodegradable polymer [poly-l-lactic acid (PLA)] in a porcine coronary overstretch restenosis model. Forty coronary arteries of 20 pigs were randomized into four groups in which the coronary arteries had a bare metal stent (BMS, n = 10), ALA-eluting stent with PLA (AES, n = 10), sirolimus-eluting stent with PLA (SES, n = 10), or sirolimus- and ALA-eluting stent with PLA (SAS, n = 10). A histopathological analysis was performed 28 days after the stenting. The ALA and sirolimus released slowly over 30 days. There were no significant differences between groups in the injury or inflammation score; however, there were significant differences in the percent area of stenosis (56.2 ± 11.78 % in BMS vs. 51.5 ± 12.20 % in AES vs. 34.7 ± 7.23 % in SES vs. 28.7 ± 7.30 % in SAS, P < 0.0001) and fibrin score [1.0 (range 1.0–1.0) in BMS vs. 1.0 (range 1.0–1.0) in AES vs. 2.0 (range 2.0–2.0) in SES vs. 2.0 (range 2.0–2.0) in SAS, P < 0.0001] between the four groups. The percent area of stenosis based on micro-computed tomography corresponded with the restenosis rates based on histopathological stenosis in different proportions in the four groups (54.8 ± 7.88 % in BMS vs. 50.4 ± 14.87 % in AES vs. 34.5 ± 7.22 % in SES vs. 28.9 ± 7.22 % in SAS, P < 0.05). SAS showed a better neointimal inhibitory effect than BMS, AES, and SES at 1 month after stenting in a porcine coronary restenosis model. Therefore, SAS with PLA can be a useful drug combination for coronary stent coating to suppress neointimal hyperplasia.  相似文献   
90.
Soft conductive materials should enable large deformation while keeping high electrical conductivity and elasticity. The graphene oxide (GO)‐based sponge is a potential candidate to endow large deformation. However, it typically exhibits low conductivity and elasticity. Here, the highly conductive and elastic sponge composed of GO, flower‐shaped silver nanoparticles (AgNFs), and polyimide (GO‐AgNF‐PI sponge) are demonstrated. The average pore size and porosity are 114 µm and 94.7%, respectively. Ag NFs have thin petals (8–20 nm) protruding out of the surface of a spherical bud (300–350 nm) significantly enhancing the specific surface area (2.83 m2 g?1). The electrical conductivity (0.306 S m?1 at 0% strain) of the GO‐AgNF‐PI sponge is increased by more than an order of magnitude with the addition of Ag NFs. A nearly perfect elasticity is obtained over a wide compressive strain range (0–90%). The strain‐dependent, nonlinear variation of Young's modulus of the sponge provides a unique opportunity as a variable stiffness stress sensor that operates over a wide stress range (0–10 kPa) with a high maximum sensitivity (0.572 kPa?1). It allows grasping of a soft rose and a hard bottle, with the minimal object deformation, when attached on the finger of a robot gripper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号