首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   6篇
  国内免费   2篇
工业技术   138篇
  2023年   2篇
  2022年   8篇
  2021年   19篇
  2020年   7篇
  2019年   12篇
  2018年   2篇
  2017年   9篇
  2016年   7篇
  2015年   7篇
  2014年   4篇
  2013年   15篇
  2012年   13篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1984年   1篇
排序方式: 共有138条查询结果,搜索用时 125 毫秒
121.
This paper deals with the study of mechanical behavior of a circular functionally graded material (FGM) micro-plate subjected to a nonlinear electrostatic pressure and mechanical shock. It is assumed that the FGM micro-plate is made of metal and ceramic and that material properties are changed continuously along the plate thickness according to a typical function. The nonlinear equation of static deflection and dynamic motion is solved using a step-by-step linearization method and Galerkin-based reduced order model, respectively. In order to find the response of the FGM micro-plate to the electrostatic load and analyze stability of fixed points, static deflection, time history and phase portrait for different applied voltages and initial conditions are illustrated and the effects of different percentages of metal and ceramic constituent on the response of the system are investigated. In addition, effects of mechanical shocks characteristics (amplitudes and durations) on the stability of FGM micro-plate are studied.  相似文献   
122.
A circular sharp-crested weir is a circular control section used for measuring flow in open channels, reservoirs, and tanks. As flow measuring devices in open channels, these weirs are placed perpendicular to the sides and bottoms of straight-approach channels. Considering the complex patterns of flow passing over circular sharp-crested weirs, an equation having experimental correlation coefficients was used to extract a stage-discharge relation for weirs. Assuming the occurrence of critical flow over the weir crest, a theoretical stage-discharge relation was obtained in this study by solving two extracted non-linear equations. To study the precision of the theoretical stage-discharge relation, 58 experiments were performed on six circular weirs with different diameters and crest heights in a 30 cm-wide flume. The results show that, for each stage above the weirs, the theoretically calculated discharge is less than the measured discharge, and this difference increases with the stage. Finally, the theoretical stage-discharge relation was modified by exerting a correction coefficient which is a function of the ratio of the upstream flow depth to the weir crest height. The results show that the modified stage-discharge relation is in good agreement with the measured results.  相似文献   
123.
In this paper flexural vibrations of an electrostatically actuated cantilever microbeam in an incompressible inviscid stationary fluid have been studied. By applying “Three dimensional aerodynamic theory” pressure jump across the microbeam has been investigated and the inertial effects of fluid on microbeam dynamics have been modeled as a mass added to microbeam mass. Magnitude of the added mass has been calculated for various aspect ratios of cantilever microbeams and compared with those of clamped-clamped microbeams. To investigate the dynamic characteristics, it has been considered that the microbeam has been deflected by a DC voltage, V DC and then the dynamic characteristics and forced response of the system have been considered about these conditions. Galerkin-based step by step linearization method (SSLM) and Galerkin-based reduced order model have been applied to solve the nonlinear static and dynamic governing equations, respectively. Water by neglecting viscidity effects, as an instant has been considered as a surrounding fluid and the frequency response of the microbeam has been compared with that of vacuum conditions. It has been shown that because of the added mass effects in watery environment, the natural frequencies of the microbeam decrease. Because of the higher dielectric coefficient and increasing electrical stiffness and decreasing total stiffness consequently, maximum amplitude of the microbeam vibrations increases in watery environment, compared with vacuum. Moreover, it has been shown that increasing the DC voltage, increases the electrical stiffness and maximum amplitude of the microbeam vibrations, consequently, It has been shown that in higher voltages (near pull-in voltage), the rate of variation of resonance frequency and maximum amplitude is stronger than lower voltages.  相似文献   
124.

There is increased interest in deploying big data technology in the healthcare industry to manage massive collections of heterogeneous health datasets such as electronic health records and sensor data, which are increasing in volume and variety due to the commoditization of digital devices such as mobile phones and wireless sensors. The modern healthcare system requires an overhaul of traditional healthcare software/hardware paradigms, which are ill-equipped to cope with the volume and diversity of the modern health data and must be augmented with new “big data” computing and analysis capabilities. For researchers, there is an opportunity in healthcare data analytics to study this vast amount of data, find patterns and trends within data and provide a solution for improving healthcare, thereby reducing costs, democratizing health access, and saving valuable human lives. In this paper, we present a comprehensive survey of different big data analytics integrated healthcare systems and describe the various applicable healthcare data analytics algorithms, techniques, and tools that may be deployed in wireless, cloud, Internet of Things settings. Finally, the contribution is given in formation of a convergence point of all these platforms in form of SmartHealth that could result in contributing to unified standard learning healthcare system for future.

  相似文献   
125.
In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180° bend, 0.6 m to 0.45 m wide, was simulated using the SSIIM...  相似文献   
126.
Dairy byproduct proteins are considered natural functional additives having the ability to interact with the starch and gluten network in a dough system and thus behave as dough improvers. Native whey proteins have negative effect in bread making so whey protein concentrates modified to increase viscosity in solution (mWPC) might overcome undesirable weakening of the gluten network which usually occurs in frozen dough products during prolonged times in frozen storage. The objective of this research project was to determine the effect of mWPC on empirical and fundamental dynamic rheological properties of wheat flour dough. The results for empirical rheological studies showed that addition of mWPC had significant effects on mixographic parameters and also increased values of mixing time and peak height percentage. The results for the fundamental mechanical properties of the frozen dough revealed an increase in the values of G′ with the increase in the frequency, along with an upward trend with increasing temperature, but the highest values were obtained after cooling. Addition of mWPC in the dough treatments induced softening in the dough system, as shown by the decrease in the values of the viscoelastic moduli. Rheological and textural changes in the bakery products made from frozen dough could be imparted by the incorporation of modified whey protein concentrates as dough improvers.  相似文献   
127.
This article presents a study of the erosion resistance of coated and uncoated polymer matrix composites for tidal turbine conditions. It focuses on the development of comparative erosive wear mode and mechanism maps for such materials. In our earlier work, testing of glass-fiber-reinforced polymer composites for tribological applications in marine simulated conditions, several erosion-related issues were highlighted. The combined effects of the NaCl solution and sand dramatically enhanced the erosive wear of the uncoated specimens. In order to address those issues, an erosion-resistant polymeric coating was applied to the composite and tested in marine simulated conditions with an extended range of sand particle size. The test results of the uncoated and coated composite have been compared in this research by erosive wear mode and mechanism maps techniques. These maps reveal that the coating has enhanced the erosion resistance. These findings provide significant progress toward materials selection approaches to manufacture of tidal turbine blades.  相似文献   
128.
The localization of multiwall carbon nanotubes (MWCNTs) in the immiscible blends of ethylene–1‐octene copolymer (EOC) and cyclic olefin copolymer (COC) with the sea–island morphology and electrical conductivity of resulting nanocomposites were investigated. Depending on the feeding orders, as the MWCNTs were located in the COC droplet, the electrical conductivity was obtained as high as 5.71 × 10?7 S/cm, while the MWCNTs were located in EOC/COC interface, the electrical conductivity increased significantly up to 1.72 × 10?2 S/cm. The improved electrical conductivity in EOE/COC/MWCNTs nanocomposite is attributed to the interfacial localization of MWCNTs which is resulted from thermodynamic affinity of MWCNTs to COC, as well as an interconnected structure via deformed and swelled COC droplets. Thermodynamic affinity of MWCNTs to COC and established interconnected structure are confirmed by rheological characterization, microscopic observations, dynamic mechanical analysis, and electrical conductivity measurements. Therefore, as a result of selective localization of MWCNTs and well‐designed phase morphology, lower rheological and especially electrical percolation thresholds could be obtained in the ternary nanocomposites compared to the binary systems. POLYM. ENG. SCI., 59:447–456, 2019. © 2018 Society of Plastics Engineers  相似文献   
129.
Texture of pomegranate fruit and arils are the main quality attributes in the food process industries. In this study, the texture properties of pomegranate fruit and arils (cv. “Ashraf”) at four different stage of maturity (88, 109, 124, and 143 days after full bloom) were evaluated using the puncture test (rupture force and rupture energy) and compression test (bioyield force, rupture energy, and young modulus). The tests showed that all studied textural parameters were sensitive textural parameters for distinguishing the maturity stages. Rupture force and rupture energy of pomegranate fruit were determined at top, middle, and bottom positions of the fruit. The results showed that compression load values of aril increased with advances in maturity stage of fruit, while puncture load values of fruit decreased. The textural properties of pomegranate fruit and arils exhibited a strong dependence (p < .05) on the degree of maturity at harvesting time. Also results showed that rupture force of three different studied positions of fruit was severely different. The highest and lowest values were observed at top and middle position, respectively.  相似文献   
130.
In the present paper, a small cogeneration system including a gas microturbine and a fire tube heat recovery steam generator (HRSG) is considered. The HRSG system is optimized considering two different objective functions. Sum of the exergy losses resulting from the gases leaving the stack and the exergy destruction due to the internal irreversibility is considered as the first objective function while the second objective function is considered to be the sum of annualized values of the capital cost and the cost of the energy loss. The cost of energy loss includes the cost of the loss by hot gases leaving the stack and the cost of the reduction in the power production in the microturbine as the result of the pressure drop in the HRSG. Finally multi-objective optimization method via genetic algorithm is employed to find the optimum values of the design parameters. A decision making process based on finding the closest point to the ideal point is used. Results of different optimum points on the Pareto front are compared and discussed. The results show that the thermodynamic optimization doesn’t lead to major improvement of the total cost of the HRSG although the thermoeconomic and multi-objective methods improve the total cost of the system due decrease in the cost of energy loss due to decrease in the pinch point.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号