首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   23篇
  国内免费   1篇
工业技术   731篇
  2023年   10篇
  2022年   17篇
  2021年   36篇
  2020年   21篇
  2019年   21篇
  2018年   27篇
  2017年   12篇
  2016年   14篇
  2015年   13篇
  2014年   25篇
  2013年   26篇
  2012年   21篇
  2011年   26篇
  2010年   24篇
  2009年   14篇
  2008年   25篇
  2007年   11篇
  2006年   13篇
  2005年   5篇
  2004年   6篇
  2003年   10篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   16篇
  1998年   65篇
  1997年   44篇
  1996年   44篇
  1995年   29篇
  1994年   23篇
  1993年   20篇
  1992年   2篇
  1991年   9篇
  1990年   8篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   5篇
  1981年   7篇
  1980年   9篇
  1979年   2篇
  1978年   3篇
  1977年   6篇
  1976年   10篇
  1975年   4篇
  1974年   3篇
排序方式: 共有731条查询结果,搜索用时 15 毫秒
141.
To examine the role of intercellular interaction on cell differentiation and gene expression in human prostate, we separated the two major epithelial cell populations and studied them in isolation and in combination with stromal cells. The epithelial cells were separated by flow cytometry using antibodies against differentially expressed cell-surface markers CD44 and CD57. Basal epithelial cells express CD44, and luminal epithelial cells express CD57. The CD57+ luminal cells are the terminally differentiated secretory cells of the gland that synthesize prostate-specific antigen (PSA). Expression of PSA is regulated by androgen, and PSA mRNA is one of the abundant messages in these cells. We show that PSA expression by the CD57+ cells is abolished after prostate tissue is dispersed by collagenase into single cells. Expression is restored when CD57+ cells are reconstituted with stromal cells. The CD44+ basal cells possess characteristics of stem cells and are the candidate progenitors of luminal cells. Differentiation, as reflected by PSA production, can be detected when CD44+ cells are cocultured with stromal cells. Our studies show that cell-cell interaction plays an important role in prostatic cytodifferentiation and the maintenance of the differentiated state.  相似文献   
142.
The O-specific polysaccharide of Proteus mirabilis O28 was found to contain D-galactose, D-galacturonic acid (GalA), 2-acetamido-2-deoxy-D-glucose, L-serine, L-lysine, and O-acetyl groups in molar ratios 1:2:1:1:1:1, the amino acids being linked via their alpha-amino group to the carboxyl group of GalA. The polysaccharide was studied using 1H- and 13C-NMR spectroscopy, including selective spin-decoupling, one-dimensional total correlation spectroscopy, two-dimensional homonuclear correlation spectroscopy (COSY), heteronuclear 13C,1H COSY, one-dimensional NOE, and two-dimensional rotating-frame NOE spectroscopy and partial acid hydrolysis followed by borohydride reduction, methylation, and GLC/MS analysis of the derived glycosyl alditols. The following structure of the repeating unit was established: [formula: see text] Epitope specificity of the P. mirabilis O28 polysaccharide was analysed using a homologous rabbit polyclonal antiserum in quantitative precipitation, passive immunohemolysis, and inhibition of passive immunohemolysis. Study with related synthetic glycopolymers (2-acrylamidoethyl glycosides of amides of alpha-D-GalA with amino acids copolymerised with acrylamide) showed the importance of D-GalA(L-Lys) for manifesting serological specificity of the O-antigen. Serological cross-reactions between P. mirabilis O28, S1959, and R14/S1959 (a transient-like form) are discussed.  相似文献   
143.
144.
145.
Five cases of prenatally detected neck masses that had a potential for airway obstruction at birth are described. The various options for management of the airway are discussed, including using maternal-fetal circulation until intubation, rigid bronchoscopy, tracheotomy, cyst aspiration, or extracorporeal membrane oxygen support. Congenital abnormalities involving the fetal face or neck are extremely rare. With technical advances in ultrasonography, these masses were first noted on prenatal ultrasound in the late 1970s. Before that period, they were detected at delivery. These masses are solid or cystic and may cause asphyxia because of airway obstruction at the time of delivery. The survivability of these neonates without immediate intervention at birth is 0% to 20%. If a neck mass is detected in the fetus by prenatal ultrasonography, then a strategic plan for these types of cases should be developed early in the prenatal period. The airway management plan should be tailored for each individual case. Coordination and the expertise of an obstetrician, neonatologist, anesthesiologist, and pediatric otolaryngologist are needed to manage these complex situations.  相似文献   
146.
Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.  相似文献   
147.
We conducted studies to investigate the nature and underlying mechanisms of the vascular effects of rutaecarpine (Rut), an alkaloid isolated from the Chinese herbal drug Evodia rutaecarpa. By using largely the effects on phenylephrine (PE)-induced contraction in the isolated rat aorta as the experimental index and by comparison with several known vascular muscle relaxants such as acetylcholine (ACh), histamine, and A23187, Rut relaxed PE-precontracted aorta in concentration-(10(-7)-10(-4) M) and endothelium-dependent manners. Studies with appropriate antagonists indicated that this was coupled to nitric oxide (NO) and guanylyl cyclase. Extracellular Ca2+ removal and treatment with the intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), suggested that influx of extracellular Ca2+ was the major factor contributing to the action of Rut. Pertussis toxin suppressed the relaxation potency of histamine but had no effects on the actions of Rut. NaF, the G proteins activator, attenuated the actions of ACh, but only minimally affected Na-NP, A23187, and Rut. 1-[6-{[17 beta-3-methoxyestra-1,2,3(10)-trien-17-yl]amino} hexyl]-1H-pyrrole-2,5-dione (U73122), the phospholipase C inhibitor, again suppressed the actions of ACh but had few effects on A23187 and Rut. Taken together, these results suggest that these vasorelaxants had different cellular mechanisms and that neither pertussis toxin-sensitive Gi protein, other G proteins, nor phospholipase C activation was involved in the cellular response to rutaecarpine.  相似文献   
148.
One of the most challenging research areas in pharmacology in the new millennium is to understand why individuals respond differently to drug therapy and to what extent that individual variability in disposition is responsible for the observed differences in therapeutic efficacy and adverse reactions. To answer these complex questions, drug-metabolism research will rely on multidisciplinary approaches more than ever to investigate the many components involved in drug metabolism and disposition. Major research challenges include the following: (1) the genetic variation of drug targets (receptors, enzymes, etc.), drug transporters (multispecific organic anion transporter, P-glycoprotein, alpha-1-acid glycoprotein, etc.), and drug-metabolizing enzymes (cytochrome P450s and other enzymes); (2) the structure and function of all genetic variants of drug receptors, transporters, and metabolizing enzymes; (3) the induction, repression, and inhibition of all components involved in drug disposition; (4) the development of noninvasive in vivo methods to determine the physiological significance of various components in the handling of specific therapeutic agents in humans; (5) the mechanism of idiosyncratic adverse drug reactions; and (6) the pharmacokinetic and pharmacodynamic relationships to explain the individual differences in therapeutic efficacy and drug safety. Thus successful drug-metabolism research in the new millennium must integrate receptor biology, enzymology, recombinant DNA technology, biochemical toxicology, and drug disposition into study design and conduct balanced in vitro and in vivo experiments to allow a full understanding of the mechanisms of individual variability in drug therapy and drug safety.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号