首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5337篇
  免费   397篇
  国内免费   11篇
工业技术   5745篇
  2024年   5篇
  2023年   64篇
  2022年   58篇
  2021年   317篇
  2020年   173篇
  2019年   200篇
  2018年   207篇
  2017年   206篇
  2016年   250篇
  2015年   212篇
  2014年   270篇
  2013年   447篇
  2012年   393篇
  2011年   449篇
  2010年   333篇
  2009年   331篇
  2008年   292篇
  2007年   253篇
  2006年   214篇
  2005年   151篇
  2004年   123篇
  2003年   94篇
  2002年   86篇
  2001年   63篇
  2000年   56篇
  1999年   57篇
  1998年   79篇
  1997年   64篇
  1996年   52篇
  1995年   26篇
  1994年   36篇
  1993年   29篇
  1992年   9篇
  1991年   11篇
  1990年   12篇
  1989年   10篇
  1988年   5篇
  1987年   11篇
  1985年   12篇
  1984年   8篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   7篇
  1979年   9篇
  1978年   6篇
  1977年   10篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有5745条查询结果,搜索用时 218 毫秒
991.
Enhanced technologies from oil recovery to unconventional fuels - oil shale, oil sands and extra-heavy oil – have in common complex chemical reactions processes. This paper is about the formulation and optimization of the chemical mechanism especially in oil shale and semi-coke combustion. The Levenberg–Marquardt algorithm was used to minimize the error between estimated values and the thermogravimetric data for combustion mechanisms of 4-steps and 3-steps proposed for the oil shale and its semi-coke respectively. The kinetic parameters such as reaction order, pre-exponential factor, activation energy and stoichiometric coefficients that affect drying, pyrolysis, oxidation and decarbonation reactions were estimated with success. The values of activation energies were 54–67 kJ mol?1 for oil shale drying, 62–65 kJ mol?1 for pyrolysis reaction, up to 100 kJ mol?1 for Fixed Carbon (FC) oxidation reaction, and 162–418 kJ mol?1 for decarbonation reaction. Regarding to the semi-coke combustion, the activation energies were 33 kJ mol?1 for drying reaction, 211 kJ mol?1 for oxidation reaction and 291 kJ mol?1 for decarbonation reaction. The chemical reactions suggest reaction order superior to one, except to the decarbonation reaction at 3 K min?1. Considering the estimated parameters, as well as a heating rate at 3 K min?1, an oil shale containing about 20 wt.% of organic matter and 34.6 wt.% of CaCO3, the species mass fractions formed during combustion process were 3.4 wt.% of FC, 10.6 wt.% of Oil, 3.3 wt.% of HC and 1.8 wt.% of CO. The fraction of CO2 formed accounts a total of 21.6 wt.%. For a semi-coke containing 3.4 wt.% of FC and 40.6 wt.% of CaCO3, its combustion formed 2.1 wt.% of CO. The CO2 fraction from oxidation and decarbonation reactions accounts 10.2 wt.%, considering that the stoichiometric mass coefficient γ = 0.75 in decarbonation reaction.  相似文献   
992.
Electrophoretic deposition (EPD) was used to deposit sub-micrometric ZrO2 particles on metallic powder compacts belonging to the systems Ni + Al and Ti + Al, which were used as deposition electrodes in the EPD cell. After EPD, combustion synthesis (CS) of such reactive electrodes was ignited in a microwave single-mode applicator, operating at a frequency of 2.45 GHz, in order to obtain in a single step the synthesis of the desired intermetallic phase (substrate) and the sintering of the previously deposited ceramic particles (or coating). Experimental results demonstrate that the excess heat released during the formation of nickel and titanium aluminides by CS can be exploited not only to self-sustain and self-propagate the reaction front along the substrate, but also to rapidly sinter the coating obtained by EPD. The innovative procedure here proposed is a promising strategy in order to obtain, in a single step, high temperature intermetallic-based materials, protected by well adhered ceramic coatings.  相似文献   
993.
Interventional cardiology procedures are increasing because they offer many advantages to patients compared with other techniques: therefore the Italian National Institution for Insurance against Accidents at Work decided to start a survey for monitoring the state-of-the-art regarding the professionals involved in those procedures. The survey covered six cardiology and medical physics Italian departments. Each centre was asked to record 10 examinations for five types of procedures: coronary angiography (CA), electrophysiology studies (ES), pacemaker implantation (PI), percutaneous transluminal coronary angioplasty (PTCA) and radiofrequency catheter ablation (RA). For each examination all the centres were requested to fill in a questionnaire containing information regarding the operator performing the examination, the patient and the procedure. A total of 290 examinations were recorded: 103 CA, 14 ES, 68 PI, 79 PTCA and 26 RA. As occupational doses are strongly related to patient doses, both patients and operators radiation dose data are reported. Ratios of maximum to minimum mean patient doses across the hospitals surveyed were 2.0, 3.9, 7.0, 1.8 and 1.4 for CA, ES, PI, PTCA and RA, respectively. The calculated rounded mean dose-area product values across all participating hospitals were comparable with other values reported in the literature. In general, specific radiation protection tools were used by all operators performing different procedures in all hospitals. A major issue in this survey was the absence of information about correlation between staff and patient doses in a single procedure: future studies could be more aimed to prospective goals where occupational exposures per procedure are monitored specifically.  相似文献   
994.
In this paper, we report the obtention of In2O3 nanostructured microwires by the decomposition thermal treatment of InSe single crystal in two-steps under an oxygen–ammonia flow without the presence of any catalyst. Long In2O3 microwires with uniform shape and homogeneous surface were first synthesized through thermal treatment of InSe single crystal at temperature of about 640 °C; then, furnace temperature was increased to 750 °C and, as annealing time proceeded, the obtained microwires served as substrates on which nanorod branches grew. The shape and the structure of the microarchitectures were characterized by means scanning electron microscopy, transmission electron microscopy, selected area diffraction pattern, X-Ray diffraction and Raman spectroscopy. Our results indicated that In2O3 primary wires with a clean surface grew in the [100] direction and that the secondary protuberances grew in the [011] direction. A possible growth mechanism of the hierarchical microwires was also proposed.  相似文献   
995.
It is demonstrated that halogen bonding can be used to construct low‐molecular‐weight supramolecular complexes with unique light‐responsive properties. In particular, halogen bonding drives the formation of a photoresponsive liquid‐crystalline complex between a non‐mesogenic halogen bond‐donor molecule incorporating an azo group, and a non‐mesogenic alkoxystilbazole moiety, acting as a halogen bond‐acceptor. Upon irradiation with polarized light, the complex exhibits a high degree of photoinduced anisotropy (order parameter of molecular alignment > 0.5). Moreover, efficient photoinduced surface‐relief‐grating (SRG) formation occurs upon irradiation with a light interference pattern, with a surface‐modulation depth 2.4 times the initial film thickness. This is the first report on a halogen‐bonded photoresponsive low‐molecular‐weight complex, which furthermore combines a high degree of photoalignment and extremely efficient SRG formation in a unique way. This study highlights the potential of halogen bonding as a new tool for the rational design of high‐performance photoresponsive suprastructures.  相似文献   
996.
997.
Microcavity-integrated graphene photodetector   总被引:2,自引:0,他引:2  
There is an increasing interest in using graphene (1, 2) for optoelectronic applications. (3-19) However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating graphene with a Fabry-Pérot microcavity, the optical absorption is 26-fold enhanced, reaching values >60%. We present a graphene-based microcavity photodetector with responsivity of 21 mA/W. Our approach can be applied to a variety of other graphene devices, such as electro-absorption modulators, variable optical attenuators, or light emitters, and provides a new route to graphene photonics with the potential for applications in communications, security, sensing and spectroscopy.  相似文献   
998.
Carrier trapping is one of the main sources of performance degradation in nanocrystal-based devices. Yet the dynamics of this process is still unclear. We present a comprehensive investigation into the efficiency of hole transfer to a variety of trap sites located on the surface of the core or the shell or at the core/shell interface in CdSe nanocrystals with both organic and inorganic passivation, using the atomistic semiempirical pseudopotential approach. We separate the contribution of coupling strength and energetics in different systems and trap configurations, obtaining useful general guidelines for trapping rate engineering. We find that trapping can be extremely efficient in core-only systems, with trapping times orders of magnitude faster than radiative recombination. The presence of an inorganic shell can instead bring the trapping rates well below the typical radiative recombination rates observed in these systems.  相似文献   
999.
1000.
A silicon nanowire-based biosensor has been designed and applied for label-free and ultrasensitive detection of the early stage of recombinational DNA repair by RecA protein. Silicon nanowires transistors were fabricated by atomic force microscopy nanolithography and integrated into a microfluidic environment. The sensor operates by measuring the changes in the resistance of the nanowire as the biomolecular reactions proceed. We show that the nanoelectronic sensor can detect and differentiate several steps in the binding of RecA to a single-stranded DNA filament taking place on the nanowire-aqueous interface. We report relative changes in the resistance of 3.5% which are related to the interaction of 250 RecA·single-stranded DNA complexes. Spectroscopy data confirm the presence of the protein-DNA complexes on the functionalized silicon surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号