首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   23篇
工业技术   374篇
  2023年   5篇
  2022年   6篇
  2021年   25篇
  2020年   5篇
  2019年   10篇
  2018年   18篇
  2017年   17篇
  2016年   12篇
  2015年   10篇
  2014年   11篇
  2013年   19篇
  2012年   20篇
  2011年   15篇
  2010年   12篇
  2009年   10篇
  2008年   14篇
  2007年   15篇
  2006年   12篇
  2005年   5篇
  2004年   13篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   17篇
  1997年   11篇
  1996年   10篇
  1995年   7篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1976年   4篇
  1972年   1篇
排序方式: 共有374条查询结果,搜索用时 8 毫秒
371.
All-solid-state lithium–sulfur (Li/S) batteries are promising next-generation energy-storage devices owing to their high capacities and long cycle lives. The Li2S active material used in the positive electrode has a high theoretical capacity; consequently, nanocomposites composed of Li2S, solid electrolytes, and conductive carbon can be used to fabricate high-energy-density batteries. Moreover, the active material should be constructed with both micro- and nanoscale ion-conduction pathways to ensure high power. Herein, a Li2S–Li2O–LiI positive electrode is developed in which the active material is dispersed in an amorphous matrix. Li2S–Li2O–LiI exhibits high charge–discharge capacities and a high specific capacity of 998 mAh g−1 at a 2 C rate and 25 °C. X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy observation suggest that Li2O–LiI provides nanoscale ion-conduction pathways during cycling that activate Li2S and deliver large capacities; it also exhibits an appropriate onset oxidation voltage for high capacity. Furthermore, a cell with a high areal capacity of 10.6 mAh cm–2 is demonstrated to successfully operate at 25 °C using a Li2S–Li2O–LiI positive electrode. This study represents a major step toward the commercialization of all-solid-state Li/S batteries.  相似文献   
372.
373.
The human brain possesses an exceptional information processing capability owing to the 3D and dense network architecture of numerous neurons and synapses. Brain-inspired neuromorphic hardware can also benefit from 3D architectures, such as high integration of circuits and acquisition of highly complex dynamical systems. In this study, for future 3D neuromorphic engineering, 3D conductive polymer networks consisting of poly(3,4-ethylenedioxy-thiophene) doped with poly(styrene sulfonate) anions (PEDOT:PSS) are successfully and stably fabricated between multiple electrodes from scratch in precursor solution by electropolymerization. The networks efficiently emulate the 3D local connections between neighboring neurons observed in the cortex. This novel technology, which allows 3D conductive wiring only between desired electrodes, is unprecedented and has potential as an underlying technology for 3D integration. Furthermore, the experimental results also conclusively prove that conductance modification can be performed by manipulating the physical and chemical properties of 3D branch-wired conductive polymer wires, thus demonstrating for the first time the feasibility of neuromorphic wetware with enhanced biological plausibility in the subsequent post-Moore era.  相似文献   
374.
Pronounced magnetocaloric effects are typically observed in materials that often contain expensive and rare elements and are therefore costly to mass produce. However, they can rather be exploited on a small scale for miniaturized devices such as magnetic micro coolers, thermal sensors, and magnetic micropumps. Herein, a method is developed to generate magnetocaloric microstructures from an equiatomic iron–rhodium (FeRh) bulk target through a stepwise process. First, paramagnetic near-to-equiatomic solid-solution FeRh nanoparticles (NPs) are generated through picosecond (ps)-pulsed laser ablation in ethanol, which are then transformed into a printable ink and patterned using a continuous wave laser. Laser patterning not only leads to sintering of the NP ink but also triggers the phase transformation of the initial γ- to B2-FeRh. At a laser fluence of 246 J cm−2, a partial (52%) phase transformation from γ- to B2-FeRh is obtained, resulting in a magnetization increase of 35 Am2 kg−1 across the antiferromagnetic to ferromagnetic phase transition. This represents a ca. sixfold enhancement compared to previous furnace-annealed FeRh ink. Finally, herein, the ability is demonstrated to create FeRh 2D structures with different geometries using laser sintering of magnetocaloric inks, which offers advantages such as micrometric spatial resolution, in situ annealing, and structure design flexibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号