首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   29篇
工业技术   312篇
  2024年   1篇
  2023年   4篇
  2022年   13篇
  2021年   96篇
  2020年   24篇
  2019年   19篇
  2018年   13篇
  2017年   11篇
  2016年   17篇
  2015年   13篇
  2014年   15篇
  2013年   14篇
  2012年   27篇
  2011年   12篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2003年   3篇
排序方式: 共有312条查询结果,搜索用时 421 毫秒
11.
Previous attempts to use polylactide (PLA) latex particles and nanofibrillated cellulose (NFC) in papermaking processing have been limited to low NFC content. In the present study, a bionanocomposite material was successfully produced using a PLA latex and NFC. The components were mixed using a wet mixing method and bionanocomposite films were made by filtration followed by hot pressing. In composite materials, the dispersion of the reinforcing component in the matrix is critical for the material properties. Biopolymers such as PLA are non-polar and soluble only in organic solvents; NFC is, however, highly hydrophilic. By utilizing latex, i.e., an aqueous dispersion of biopolymer micro-particles, wet mixing is possible and the problem of aggregation of the hydrophilic nanocellulose in organic solvent is avoided. The properties of the resulting NFC/PLA latex bionanocomposite films were analyzed. Thorough blending resulted in good dispersion of the reinforcing component within the matrix. Adding increasing amounts of NFC improved the Young's modulus, tensile strength, and strain at break of the bionanocomposite material. The increase in the tensile properties was linear with increasing NFC content as a result of the good dispersion. The NFC also improved the thermal stability of the bionanocomposite material. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
12.
Polycyclic aromatic hydrocarbons (PAHs) are relatively well-known organic pollutants and due to their carcinogenic and mutagenic properties their presence in the environment still attracts a lot of attention.

According to literature reports and own research, PAHs presence in wastewaters is common. It was confirmed that PAHs are the components of municipal landfill leachate. Membrane techniques are one of the most interesting ways of removing PAHs from leachate.

The purpose of this article is to monitor PAHs concentration changes during the membrane (reverse osmosis - RO) leachate treatment processes. In the first stage of testing leachates were filtrated on the sand bed (pre-filtration). After the pre-filtration they were directed to the membrane module for the main filtration.

Sixteen PAHs listed by EPA were analyzed. The results with information on PAHs concentration in leachate samples were presented using HPLC with fluorescence detection (FLD). The changes in PAHs concentration were determined in leachate samples before and after pre-filtration as well as after RO. The decrease of PAHs concentration in the samples was observed after these processes. The total concentration of 16 PAHs in raw municipal landfill leachates amounted to 23.64–26.95 μg/L. The research confirmed the high efficiency in removal of PAHs while using a reverse osmosis (59–72%). Including the pre-filtration, the overall level of removed PAHs reached 81–86%. The average PAHs concentration after pre-filtration and RO was in the 4.46–4.99 μg/L range. The municipal landfill leachate with a high concentration of PAHs should be cleaned before it is discharged into the environment.  相似文献   

13.
Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development concept of the global economy. Therefore, research aiming at improving their performance i.e. Coefficient of Performance (COP) by optimizing the construction of sorption beds with a built in heat exchanger system is crucial. The heat transfer characteristics between the bed of porous media (sorbent) and surface of the heat exchanger system determine the heating power of an adsorption chiller. The HP increase can be obtained by heat transfer intensification due to the increase in the thermal conductivity of the sorbent layer in the vicinity of the heat exchanger’s surface. The novel modification of the sorbent layer structure is proposed in the paper in order to improve the heat transfer processes in the heat exchanger boundary layer. The analysis of desorption process conditions in the parametric model of a coated and fixed adsorption bed design is presented in the paper. The computational fluid dynamics (CFD) with conjugate heat transfer analysis is used to determine the crucial input parameters (temperature distribution in the sorbent bed) for further analytical calculations. The commercial code Ansys Fluent was used to perform numerical simulations. The developed computational model consisted of three subdomains representing heating water, heat exchanger material (copper) and sorbent (silica gel). The comparison of a novel coated design and a conventional fixed bed is discussed in the paper. The numerical analysis is based on experimental thermal conductivity measurements of the sorbent layer in different configurations, which were performed using Laser Flash Method.  相似文献   
14.
Customized implants for bone replacement are a great help for a surgeon to remodel maxillofacial or craniofacial defects in an esthetical way, and to significantly reduce operation times. The hypothesis of this study was that a composite of β-tricalcium phosphate (β-TCP) and a bioactive glass similar to the 45S5 Henchglass® is suitable to manufacture customized implants via 3D-printing process. The composite was chosen because of the bioresorption properties of the β-TCP, its capability to react as bone cement, and because of the adjustability of the bioactive glass from inert to bioresorbable. Customized implants were manufactured using the 3D-printing technique. The four point bending strength of the printed specimens was 14.9 MPa after sintering. XRD analysis revealed the occurrence of two other phases, CaNaPO4 and CaSiO3, both biocompatible and with the potential of biodegradation. We conclude that it is possible to print tailored bone substitute implants using a bioactive TCP/glass composite. The glass is not involved as reactive substance in the printing process. This offers the opportunity to alter the glass composition and therefore to vary the composition of the implant.  相似文献   
15.
Two hyperbranched polyglycerols bearing 1,1,1-tris(hydroxymethyl)propane or Bisphenol A core and terminal hydroxyl functionality were examined as components of novel wood adhesive systems. Two 1,3-dimethylol-4,5-dihydroxyethyleneurea resins (DMDHEU) were used as crosslinkers. Shear strength tests revealed that the adhesives containing up to 75 wt% of renewable glycerol-derived polyglycerols retained performance comparable to that of neat DMDHEU. The results give way to extending the area of application of hyperbranched polyglycerols in the field of wood adhesives.  相似文献   
16.
This research evaluated the antimicrobial efficacy of pullulan films containing caraway essential oil (CEO). The films were prepared from a 10% of pullulan, containing from 0.12% to 10.0% of CEO. The composition of the CEO was analyzed with the use of gas chromatography. The antimicrobial activity of the CEO was evaluated with the method of serial microdilutions, and the films containing CEO—with the agar diffusion method against selected Gram‐negative, Gram‐positive bacteria, and fungi. The structure of the film surface and its cross‐section were analyzed using a scanning electron microscope (SEM). Analyses were also carried out to determine the efficacy of a pullulan coating with 10% CEO on baby carrots experimentally inoculated with Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae, or Aspergillus niger and stored at a room temperature for 7 d. At a concentration of 0.12%, CEO inhibited the growth of all the tested microorganisms. Pullulan films containing 8% to 10% of CEO were active against all tested microorganisms. Populations of S. aureus on carrot samples were reduced by approximately 3 log CFU/g, while those of A. niger and S. cerevisiae by, respectively, 5 and 4 log CFU/g, after 7 d of storage. S. enteritidis was the most resistant among the tested species, since it was not significantly reduced after 7 d of storage. At the end of storage, samples treated with pullulan–caraway oil coating maintained better visual acceptability than control samples. Results of this study suggest the feasibility of applying a pullulan film with incorporated CEO to extend the microbiological stability of minimally processed foods.  相似文献   
17.
Free radical/cationic hybrid photopolymerization of acrylates and epoxides was induced using an initiator system comprised of the dye derivative 5,12-dihydroquinoxalino[2,3-b]quinoxaline or 5,12-dihydroquinoxalino[2,3-b]pyridopyrazine as the sensitizers and hexafluoroantimonate triarylsulfonium salt as the initiators. The curing experiments were carried out in the presence of air and the consumption of each monomer upon VIS-radiation was monitored in situ by real-time infrared spectroscopy. Hardness (H), elastic modulus (E) and the H/E ratio of the coatings obtained by visible-initiated acrylate/epoxide hybrid photopolymerization were determined using nanoindentation. DSC measurements show that the initiator system presented here may produce an interpenetrating polymer network. The pencil hardness of the obtained coatings indicates that the dye/hexafluoroantimonate triarylsulfonium salts systems studied here may have practical applications as visible-light hybrid initiators.  相似文献   
18.
This paper presents synthesis of calcium cobaltites of the nominal composition of Ca3Co4O9 prepared by the solid state reaction. The reaction between CaCO3 and Co3O4 was investigated at 700–900 °C during 20 h and at 800 °C during 2–30 h. Mass changes, phase composition and Co+3, Co+4 content were examined. Stability of the calcined specimens was tested by DTA/TG. It was found that two phases: Ca3Co4O9 and Ca3Co2O6 were present as a result of calcinations above 800 °C. On the other hand, the temperature of 750 °C was too low for calcium cobaltites to be synthesized. Mono-phase material with Ca3Co4O9 phase was obtained after calcinations at 800 °C but non-stoichiometry of the compound and its relation to the calcinations time were found. Once synthesized, the compound was stable up to 900 °C.  相似文献   
19.
Beads containing a chitosan core and a polyelectrolyte complex (PEC) shell were formed by the dropwise addition of chitosan to solutions containing sodium alginate, gellan, pectin, κ‐carrageenan, or poly(acrylic acid). Hydrogel cores were formed by crosslinking chitosan with genipin, a natural bifunctional crosslinker. The shell thickness was generally only a few molecules thick and was impermeable to the transport of macromolecules but not low molecular weight molecules. Increasing the number of anionic groups and the strength of the chitosan–polyanion interaction through selection of different anionic species increased the mechanical strength of the PEC shell by increasing the number of interaction points in the shell. Because the core and shell swelled differentially, with the shell able to swell much less than the core, increasing the shell strength increasingly constrained the degree of swelling that could be attained for the entire bead. The degree of swelling could therefore be controlled via the mechanical properties of the shell, which could in turn be explained by the molecular structure of the PEC shell. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1581–1593, 2005  相似文献   
20.
Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号