首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93230篇
  免费   17956篇
  国内免费   971篇
工业技术   112157篇
  2024年   135篇
  2023年   708篇
  2022年   1012篇
  2021年   2224篇
  2020年   3044篇
  2019年   4628篇
  2018年   4970篇
  2017年   5293篇
  2016年   5875篇
  2015年   5854篇
  2014年   6432篇
  2013年   9382篇
  2012年   6969篇
  2011年   6559篇
  2010年   5998篇
  2009年   5603篇
  2008年   5167篇
  2007年   4769篇
  2006年   3889篇
  2005年   3128篇
  2004年   2694篇
  2003年   2452篇
  2002年   2229篇
  2001年   1789篇
  2000年   1646篇
  1999年   1030篇
  1998年   2255篇
  1997年   1517篇
  1996年   952篇
  1995年   586篇
  1994年   469篇
  1993年   471篇
  1992年   186篇
  1991年   166篇
  1990年   138篇
  1989年   115篇
  1988年   141篇
  1987年   132篇
  1986年   107篇
  1985年   136篇
  1984年   118篇
  1983年   83篇
  1982年   74篇
  1981年   109篇
  1980年   97篇
  1979年   63篇
  1978年   57篇
  1977年   132篇
  1976年   241篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The aim of this review is to shed light over the most recent advances in Coenzyme Q10 (CoQ10) applications as well as to provide detailed information about the functions of this versatile molecule, which have proven to be of great interest in the medical field. Traditionally, CoQ10 clinical use was based on its antioxidant properties; however, a wide range of highly interesting alternative functions have recently been discovered. In this line, CoQ10 has shown pain-alleviating properties in fibromyalgia patients, a membrane-stabilizing function, immune system enhancing ability, or a fundamental role for insulin sensitivity, apart from potentially beneficial properties for familial hypercholesterolemia patients. In brief, it shows a remarkable amount of functions in addition to those yet to be discovered. Despite its multiple therapeutic applications, CoQ10 is not commonly prescribed as a drug because of its low oral bioavailability, which compromises its efficacy. Hence, several formulations have been developed to face such inconvenience. These were initially designed as lipid nanoparticles for CoQ10 encapsulation and distribution through biological membranes and eventually evolved towards chemical modifications of the molecule to decrease its hydrophobicity. Some of the most promising formulations will also be discussed in this review.  相似文献   
62.
A series of hyperbranched poly(citric polyethylene glycol) (PCPEG) materials with varied polyethylene glycol (PEG) chain lengths as plasticizers were mixed with maize starch (MS) via cooking and film‐forming. The structure, pasting property, plasticization, aging property, moisture absorption and compatibility of plasticized starches were studied by means of Fourier transform infrared spectroscopy, X‐ray diffraction, rapid viscosity analysis, tension testing, moisture absorption measurements and scanning electron microscopy. Compared with PEG and citric acid, PCPEG was more effective in promoting starch chain movement and inhibiting the retrogradation of starch film. Also, PCPEG/MS had smaller moisture content. The longer the plasticizer chain, the better were the aging resistance and moisture resistance of starch. But with an increase of PEG chain length, mechanical properties of PCPEG/MS deteriorated and the compatibility between PCPEG and MS decreased. The hyperbranched derivative of PEG with longer chain exhibited improved plasticization and compatibility with starch. © 2019 Society of Chemical Industry  相似文献   
63.
64.
65.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
66.
67.
Cystoseira hakodatensis is an unutilised brown algae belonging to family Sargassaceae. A crude methanol extract from the algae showed inhibitory effects on the growths of Bacillus cereus and Bacillus licheniformis. To isolate the major antimicrobial agent, a sequential active‐guided isolation procedure was applied: liquid–liquid extraction, column chromatography and bio‐autography. A marked antimicrobial agent (active α) was isolated in hydrophobic fraction and was determined to phenolics without carbohydrates and proteins by phytochemical test. Regarding the antimicrobial potential, the isolated active α showed better inhibitory effects against B. cereus and B. licheniformis at 2 and 4 times of lower concentrations (62.5 and 31.3 μg mL?1) in comparison with epigallocatechin gallate. These results showed that C. hakodatensis is a potential source of antimicrobial agent capable of preventing the growth of the two bacteria.  相似文献   
68.
69.
A novel microporous two-dimensional(2D)Ni-based phosphonate metal-organic framework(MOF;denoted as IEF-13)has been successfully synthesized by a simple and green hydrothermal method and fully characterized using a combination of experimental and computational techniques.Structure resolution by single-crystal X-ray diffraction reveals that IEF-13 crystallizes in the triclinic space group Pi having bi-octahedra nickel nodes and a photo/electroactive tritopic phosphonate ligand.Remarkably,this material exhibits coordinatively unsaturated nickel(II)sites,free-P03H2and-P03H acidic groups,a C02accessible microporosity,and an exceptional thermal and chemical stability.Further,its in-deep optoelectronic characterization evidences a photoresponse suitable for photocatalysis.In this sense,the photocatalytic activity for challenging H2generation and overall water splitting in absence of any co-catalyst using UV-Vis irradiation and simulated sunlight has been evaluated,constituting the first report for a phosphonate-MOF photocatalyst.IEF-13 is able to produce up to 2,200 fimol of H2per gram using methanol as sacrificial agent,exhibiting stability,maintaining its crystal structure and allowing its recycling.Even more,170μmol of H2per gram were produced using IEF-13 as photocatalyst in the absence of any co-catalyst for the overall water splitting,being this reaction limited by the 02reduction.The present work opens new avenues for further optimization of the photocatalytic activity in this type of multifunctional materials.  相似文献   
70.
Water Resources Management - This paper aims to evaluate the possibility of using non-utilized hydraulic energy in urban water distribution systems. For this purpose, the viability and possible...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号