首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1929篇
  免费   121篇
  国内免费   7篇
工业技术   2057篇
  2024年   5篇
  2023年   38篇
  2022年   85篇
  2021年   144篇
  2020年   95篇
  2019年   99篇
  2018年   127篇
  2017年   113篇
  2016年   133篇
  2015年   92篇
  2014年   128篇
  2013年   216篇
  2012年   183篇
  2011年   161篇
  2010年   95篇
  2009年   74篇
  2008年   40篇
  2007年   32篇
  2006年   26篇
  2005年   26篇
  2004年   18篇
  2003年   19篇
  2002年   12篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   2篇
  1996年   8篇
  1995年   10篇
  1994年   8篇
  1993年   5篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2057条查询结果,搜索用时 27 毫秒
991.
In this article, the wind power potential in Malaysia is examined. Hourly wind speed data for nine sites in Malaysia are used to optimally design wind power systems for remote housing electrification. These nine sites are Bintulu, Kota Kinabalu, Kuala Terengganu, Kuching, Kudat, Mersing, Sandakan, Tawau and Pulau Langkawi. The designed wind power systems are supposed to supply hourly load demand 6.13?kWh/day, 0.52?kW peak with 1% loss of load probability. The unit cost of the energy produced by each system is calculated and compared to the unit cost of the energy produced by a standalone photovoltaic (PV) power systems and a diesel generator power systems. The results show that the average unit cost of the energy produced by a wind power system in Malaysia is 1.6–7.29?USD/kWh while it is 0.35–0.5?USD/kWh and 0.27–0.30?USD/kWh for PV power system and diesel generator power system, respectively. Based on this, the use of wind power systems as standalone systems is not recommended for the selected sites.  相似文献   
992.
The UV–visible spectrophotometric method has been described the study of raw carbon nanotubes (R-MWCNTs) and functionalized multiwall carbon nanotubes (F-MWCNTs) for the control of bacterial growth by using validated analytical techniques. The absorption spectra of functionalized carbon nanotubes (F-MWCNTs) and raw carbon nanotubes (R-MWCNTs) show maximum absorbance at λ max 600 nm. The linear relationship was found between absorbance and concentration of R-MWCNTs and F-MWCNTs in the range of 0.25–2.0 μg mL?1. The linear regression equation was evaluated by statistical treatment of calibration data and gives the value of correlation coefficient for F-MWCNTs (0.9999) and R-MWCNTs (0.9993), which indicate excellent linearity. The Optical and regression characteristics of the proposed method were found apparent molar absorptivity, limits of detection (LOD), and limit of quantitation (LOQ) for R-MWCNTs and F-MWCNTs (5.75 × 102: 8.25 × 102 L mol?1 cm?1), (0.052: 0.018 μg mL?1), and (0.055: 0.158 μg mL?1), respectively. The validity of the proposed method was checked by precision, accuracy, linearity, limits of detection (LOD), and limit of quantitation (LOQ). The RSD (%) and quantitative recoveries (%) were obtained (0.026–0.0086) and (100.34 and 100.71) for R-MWCNTs: for F-MWCNTs by UV–visible spectrophotometric, respectively.  相似文献   
993.
Polycrystalline La0.67(Ca1?x Sr x )0.33MnO3 with different substitution level of strontium element, were synthesized via solid state reaction. Structure of samples was characterized by X-ray diffraction (XRD). XRD patterns reveal that La0.67Ca0.33MnO3 exhibits orthorhombic structure with space group Pnma. Phase transitions from orthorhombic to rhombohedral take place as Ca ions were gradually substituted by Sr ions. The XRD data were further analyzed by Rietveld refinement technique. The data show that Mn–O–Mn bond angle increases as x increases. Microstructures obtained from SEM show that substitution of Sr ions has demoted the grain growth and densification process during sintering. The substitution of Sr ions has greatly influenced the hopping integral of electron via double exchange interaction, thus affecting the electrical properties and magnetic properties as well. The resistivity decreases and the metal–insulator transition temperature (T p ) shifts to higher temperature as x increases. The magnetoresistance (MR) effect gradually decreases and MR peak shifts to higher temperature as x increases. The magnetization measured at room temperature is found to be increasing as x increases.  相似文献   
994.
The present paper reports on an effort to expose and scientifically explain the microstructure–magnetic properties relationship as they evolve with increasing sintering temperature. Mechanical alloying was used to prepare cobalt–zinc ferrite nanoparticles with sintering temperature from 800 to 1,350 °C with 50 °C increment. The microstructure of the samples was observed using a field emission scanning electron microscope, and the magnetic parameters, such as the real permeability and loss factor, were measured at room temperature in the frequency range from 10 MHz to 1.0 GHz using an Agilent 4291B impedance/material analyzer. The B–H hysteresis of the samples was investigated using a MATS-2010SD Static Hysteresisgraph. From the results, the real permeability and loss factor were observed to increase up to 1,250 °C. These increases corresponded to increases in grain size and are mainly due to easier domain wall movement. However, due to zinc loss, \(\mu ^{\prime }\) and \(\mu ^{\prime \prime }\) as well as the saturation induction decreased from 1,300 to 1,350 °C. The coercivity increased up to 850 °C and decreased with increasing temperature. This increasing-to-decreasing coercivity trend corresponded well with the single- to multi-domain grain size transition marked by critical grain size at about 0.13 μm.  相似文献   
995.
The biosorption of heavy metal ions and the antibiotic cephalexin from secondary effluents by the cell biomass of tolerant bacterial strains was investigated in this article. A total of 67 bacterial strains were isolated from a secondary effluents generated by sewage treatment plants. These strains were adapted to tolerate 6 mM nickel ions (Ni2+) and 10 g L?1 cephalexin. Bacterial cell biomass that has more than 150 mg g?1 biosorptive capacity was used for the biosorption under optimal conditions. The biosorption process was efficient in removing heavy metals: 87.63 % of cadmium, 74.61 % of copper, 58.32 % of nickel, 61.9 % of lead, and 94.26 % of zinc, respectively. The maximum biosorptive capacity of the bacterial cell biomass for cephalexin was 60 mg g?1. The efficiency of cephalexin biosorption was reduced by more than 40.83 and 82.88 % (living and dead cells, respectively) in the presence of 1 mg L?1 Ni2+ ions compared with the control, whereas no biosorption by dead cell biomass was recorded in aqueous solutions contaminated with cadmium, zinc, copper, and lead ions. In conclusion, biosorption which efficiently removes metal ions, but not cephalexin, from secondary effluents is explained.  相似文献   
996.
The anaerobic production of biohydrogen from different pretreated agroindustrial wastes, including rice bran (RB), de-oiled RB (DRB), sago starch (SS), and palm oil mill effluent (POME) via Clostridium saccharoperbutylacetonicum N1-4 was investigated in a batch culture system at 30 °C and a pH of 6.2. A yield of 7627, 6995, and 6,363 mL H2/L was obtained from H2SO4 (1 %)-treated DRB (10 %), enzymatically hydrolyzed DRB (10 %) and HCl (1 %)-treated DRB (10 %), respectively; however, untreated DRB (10 %) was able to produce only 3,286 mL H2/L. A strategic treatment of RB (10 %) with HCl (1 %) followed by enzymatic hydrolysis could produce 3,172 mL H2/L. An enzymatically hydrolyzed mixture of each POME and SS (5 %) produced 3,474 mL H2/L, and a remarkable enhancement of H2 production (7,020 mL H2/L) was achieved when the same mixture was subjected to XAD-4 resin treatment. In contrast, the enzymatically hydrolyzed SS (5 %) could produce only 4,628 mL H2/L. Conclusively, it can be stated that agricultural wastes have a potential as substrates for biohydrogen production and that pretreatment with C. saccharoperbutylacetonicum N1-4 can contribute positively to enhancing the production.  相似文献   
997.
Multidimensional sensors, such as digital camera sensors in the visual sensor networks VSNs generate a huge amount of information compared with the scalar sensors in the wireless sensor networks WSNs. Processing and transmitting such data from low power sensor nodes is a challenging issue through their limited computational and restricted bandwidth requirements in a hardware constrained environment. Source coding can be used to reduce the size of vision data collected by the sensor nodes before sending it to its destination. With image compression, a more efficient method of processing and transmission can be obtained by removing the redundant information from the captured image raw data. In this paper, a survey of the main types of the conventional state of the art image compression standards such as JPEG and JPEG2000 is provided. A literature review of their advantages and shortcomings of the application of these algorithms in the VSN hardware environment is specified. Moreover, the main factors influencing the design of compression algorithms in the context of VSN are presented. The selected compression algorithm may have some hardware-oriented properties such as; simplicity in coding, low memory need, low computational load, and high-compression rate. In this survey paper, an energy efficient hardware based image compression is highly requested to counter the severe hardware constraints in the WSNs.  相似文献   
998.
This paper describes the development of a microgripper mechanism capable of delivering high precision and fidelity manipulation of micro objects. The mechanism adopts a flexure-based concept on its joints to address the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques namely Pseudo Rigid Body Model (PRBM) and Finite Element Analysis (FEA) was implemented to expedite the prototyping procedure which leads to the establishment of high performance mechanism. A wire Electro Discharge Machining (EDM) technique was utilized to fabricate the monolithic structure of the gripper mechanism. Experimental studies were conducted on the model prototype to obtain various correlations governing the gripper performance as well as for model verification. The experimental results demonstrate a high level of integrity in comparison to the computational analysis. A high amplification characteristic and maximum stroke of 100 μm can be achieved.  相似文献   
999.
1000.
The irradiation‐induced crosslinking in 50/50 poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blend was investigated by means of dynamic mechanical analysis. The influence of trimethylolpropane triacrylate on the irradiation‐induced crosslinking of PVC/ENR blends was also studied. The enhancement in storage modulus and Tg with irradiation dose indicated the formation of irradiation‐induced crosslinks. This is further supported by the decrease in tan δmax and loss modulus peak. The compatibility of the blend was found to be improved upon irradiation. The Fox model was used to provide a further insight into the irradiation‐induced compatibility in the blend. Scanning electron microscopy studies on the cryofracture surface morphology of the blends as well as the homopolymer have been undertaken in order to gain more evidence on the irradiation‐induced crosslinking. © 2001 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号