首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   19篇
工业技术   193篇
  2023年   4篇
  2022年   2篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   6篇
  2017年   10篇
  2016年   13篇
  2015年   7篇
  2014年   11篇
  2013年   8篇
  2012年   9篇
  2011年   17篇
  2010年   11篇
  2009年   12篇
  2008年   9篇
  2007年   10篇
  2006年   1篇
  2005年   6篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有193条查询结果,搜索用时 8 毫秒
191.
Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2′-O-acetylsalicortin (1), 3′-O-acetylsalicortin (2), 2′-O-acetylsalicin (3), 2′,6′-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.  相似文献   
192.
Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC–MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC–MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.  相似文献   
193.
2D membranes such as artificially perforated graphene are deemed to bring great advantages for molecular separation. However, there is a lack of structure-property correlations in graphene membranes as neither the atomic configurations nor the number of introduced sub-nanometer defects are known precisely. Recently, bilayer silica has emerged as an inherent 2D membrane with an unprecedentedly high areal density of well-defined pores. Mass transfer experiments with free-standing SiO2 bilayers demonstrated a strong preference for condensable fluids over inert species, and the measured membrane selectivity revealed a key role of intermolecular forces in ångstrom-scale openings. In this study, vapor permeation measurements are combined with quantitative adsorption experiments and density functional theory (DFT) calculations to get insights into the mechanism of surface-mediated transport in vitreous 2D silicon dioxide. The membranes are shown to exhibit molecular sieving performance when exposed to vaporous methanol, ethanol, isopropanol, and tert-butanol. The results are normalized to the coverage of physisorbed molecules and agree well with the calculated energy barriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号