首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   28篇
  国内免费   1篇
工业技术   621篇
  2023年   4篇
  2022年   15篇
  2021年   70篇
  2020年   31篇
  2019年   32篇
  2018年   36篇
  2017年   29篇
  2016年   31篇
  2015年   27篇
  2014年   27篇
  2013年   35篇
  2012年   38篇
  2011年   30篇
  2010年   36篇
  2009年   27篇
  2008年   20篇
  2007年   17篇
  2006年   23篇
  2005年   15篇
  2004年   8篇
  2003年   10篇
  2002年   12篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
排序方式: 共有621条查询结果,搜索用时 15 毫秒
51.
The issues surrounding the question of atomicity, both in the past and nowadays, are briefly reviewed, and a picture of an ACID (atomic, consistent, isolated, durable) transaction as a refinement problem is presented. An example of a simple air traffic control system is introduced, and the discrepancies that can arise when read-only operations examine the state at atomic and finegrained levels are handled by retrenchment. Non-ACID timing aspects of the ATC example are also handled by retrenchment, and the treatment is generalised to yield the Retrenchment Atomicity Pattern. The utility of the pattern is confirmed against a number of different case studies. One is the Mondex Electronic Purse, its protocol treated as a conventional atomic transaction. Another is the recovery protocol of Mondex, viewed as a compensated transaction (leading to the view that compensated transactions in general fit the pattern). A final one comprises various unruly phenomena occurring in the implementations of software transactional memory systems, which can frequently display non-ACID behaviour. In all cases the Atomicity Pattern is seen to perform well.  相似文献   
52.
The goal of the paper is to identify the Hammerstein-type systems excited and disturbed by correlated random processes. The problem is semi-parametric in the sense that the nonlinear static characteristic is recovered without prior knowledge about the linear dynamic block, i.e. when its order is unknown. The method is based on the instrumental variables technique, with the instruments generated by input inverse filtering. It is proved that, in contrast to the least-squares-based approach, the proposed algorithm leads to an asymptotically unbiased, strongly consistent estimate. Constructive procedures of instrumental variables generation are given for some popular cases.  相似文献   
53.
This paper discusses the problem of blade cooling system optimization connected with conjugate heat transfer (CHT) analysis for reliable thermal field prediction within a steam cooled component. Since the full CHT solution, which involves the main flow, blade material and the coolant flow domains is computationally expensive from the point of view of optimization process, it was decided to reduce the problem by fixing the boundary conditions at the blade surface and solving the task for the interior only (both solid material and coolant). Such assumption, on one hand, makes the problem computationally feasible, and on the other, provides more reliable thermal field prediction than it used to be with the empirical relationships.The analysis involves shape optimization of internal cooling passages within an airfoil. The cooling passages are modeled with a set of four Bezier splines joined together to compose a closed contour. Each passage is fed with cooling steam of constant parameters at the inlet. In the present study the airfoil profile is taken as aerodynamically optimal. The search problem is solved with evolutionary algorithm and the final configuration is to be found among the Pareto optimal cooling candidates.  相似文献   
54.
The carbon material was modified by RF plasma with various reactive gases: O2, Ar and CO2. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application.  相似文献   
55.
The Building Research Institute in Warsaw has developed an organic concrete additive, known as Dikszopt, which is derived from tanning oak extract. Tests, mostly in the laboratory but some in application trials, show that it has a remarkable ability to protect reinforcing steel against corrosion, notably in carbonized concrete. It also appears to improve the consistency of the concrete mix and retard the setting time, as discussed in this article from the Institute.  相似文献   
56.
The mitochondrial response to changes of cytosolic calcium concentration has a strong impact on neuronal cell metabolism and viability. We observed that Ca2+ additions to isolated rat brain mitochondria induced in potassium ion containing media a mitochondrial membrane potential depolarization and an accompanying increase of mitochondrial respiration. These Ca2+ effects can be blocked by iberiotoxin and charybdotoxin, well known inhibitors of large conductance potassium channel (BKCa channel). Furthermore, NS1619 – a BKCa channel opener – induced potassium ion–specific effects on brain mitochondria similar to those induced by Ca2+. These findings suggest the presence of a calcium-activated, large conductance potassium channel (sensitive to charybdotoxin and NS1619), which was confirmed by reconstitution of the mitochondrial inner membrane into planar lipid bilayers. The conductance of the reconstituted channel was 265 pS under gradient (50/450 mM KCl) conditions. Its reversal potential was equal to 50 mV, which proved that the examined channel was cation-selective. We also observed immunoreactivity of anti-β4 subunit (of the BKCa channel) antibodies with ~26 kDa proteins of rat brain mitochondria. Immunohistochemical analysis confirmed the predominant occurrence of β4 subunit in neuronal mitochondria. We hypothesize that the mitochondrial BKCa channel represents a calcium sensor, which can contribute to neuronal signal transduction and survival.  相似文献   
57.
The present paper describes numerical modelling of the radiative heat transfer process in the module chamber of an internal indirect reforming-type SOFC. The ability to do internal reforming is one of the characteristics of high-temperature fuel cells, SOFC. As in any high-temperature system, radiative heat transfer is important. In this article, heat transfer between the fuel reformer surface and all other surfaces facing the reformer surfaces is modelled. Governing equations for radiative heat transfer are described using Hottel's zone method. The resulting radiation–conduction conjugate heat transfer problems are numerically solved with a combination of Gauss–Seidel and Newton–Raphson methods. The steam reforming reaction occurring inside the fuel reformer is described using Achenbach model. The obtained results indicate that, for the development of effective indirect internal reforming, the position of the reformer in the module chamber and emissivity of the surfaces of the reformer, cell and other elements in the SOFC module all play a key role.  相似文献   
58.
Experiments on mechanical consolidation of rapidly solidified (RS) powder of 6061 + 26 mass% Si alloy were performed using the oscillating-die extrusion method. The RS powder was wrapped in thin-wall 6061-alloy cup 35 mm in diameter and vacuum-compressed by means of 100 ton press. Bars 8 mm in diameter were extruded with cross-section reduction of λ = 19 without any preheating of the charge. Tubes with a diameter/wall thickness of 14 mm/1 mm and cross-section reduction of λ = 33 were also manufactured with success. TEM/STEM observations revealed a very fine structure of as-extruded material and bimodal distribution of quasi-spherical silicon particles. Statistical analysis revealed a silicon fine fraction of 0.1–0.7 μm and a coarse fraction 2.1–2.5 μm in diameter. Examination by means of TEM did not reveal any significant changes in the morphology of the silicon particles, even when a high extrusion ratio and the material annealing after deformation were used. Hot compression tests on as-extruded rods (λ = 19) and preliminary annealed samples were performed at a constant true strain rate of 5 × 10?3 s?1 within the temperature range of 293–823 K. High strength of the material and relatively high ductility of samples deformed by compression up to ?t ? 0.4 were observed. The maximum flow stress value for as-extruded material was reduced with deformation temperature from ~390 to ~3.5 MPa for 293 and 823 K, respectively. Annealing of the samples at 773 K/30 min was found to reduce the maximum flow stress by 30–40%. Tensile strengths of similar as-cast alloys and materials manufactured by means of other powder metallurgy methods were shown for the purpose of comparison.  相似文献   
59.
For a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.  相似文献   
60.
Proton exchange membrane fuel cells (PEMFCs) with Pt/C gas diffusion electrodes and graphite single‐serpentine monopolar plates were constructed based on an aromatic poly(etherimide) with isopropylidene groups (PI)/imidazole (Im) and a popular Nafion‐115 matrix. The electrochemical properties of PEMFCs were tested at 25 and 60°C. The maximum power density of 171 mW/cm2 and the maximum current density of 484 mA/cm2 were detected for Nafion‐115/PI membrane. For both constructed PEMFCs the efficiency at 0.6 V was found about 41%. Immersion of Nafion‐115 in PI or PI/Im increased the thermal stability and mechanical properties of membranes. Thermal, mechanical properties and morphology of membranes were characterized by TGA, and AFM techniques including force spectroscopy. Interactions between the components in composite membranes were established by FT‐IR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42436.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号